introduction to -'Mogula-z
Table. Of.r;(;ontents
“Page M2--1

TABLE OF CONTENTS

r)3

1- 'ntroduction IIIIIIIIIIIIIIIIIIIIIIIIIl;I-llllll-l‘!l_.ll.l."uASIIIII M2_1
2. EBNF - A Way to Describe a Syntax teecasssasssssessesansasasses M2-3

3‘ mw Concepts [ERNENEENEERNNNNNENNNENNNENNENNENNENNENENNENELNNNENLERRENNNNENRENENNN] M2_6

3-1- MOdUleS and Separate Compilation IIII-IIIIIIIIIlllllll;:iillllwﬂ M2-7
3.1-1- Modu'es 2 @ 8 A NS SE S SN PSS S SES 0SS RS S ES SRS SO M2-8
3.1-2. Separate Compilation S 8 2uE S0 SRSeYERENYSEeEESS eSO ENTE S 8D M2-16

3-2- Constant EXpreSSion EVa|Uati0n sssevnyeenEgEENE " s e spesEBEESERE M2-20

] e
3.3. Short Circuit Expression Evaluationeceeccasssascosssssss M2-21

3.4, Open Array Parameters .veeeevesssnccessssnsssesnscanasassss M2-22
3.5. ProCedure Types ® ® 0 " 0D WS 000 Ry A S S 0 PSS S SN S EYERE SS9 A S QDR OGO M2-24

3.6. lLow Level Machine ACCESS cuvuscaosunscncnncanavnassnnnsans M2-26
3.6.1. Type Transfers .eeeesvecsssesssssusscnsssancnnsansea M2-27
3.6.2. Absolute VariableS ..cuaseaassavsnsnasnenasnoanacsaas M2-28
3.6.3. The Module SYSTEM ...cceveussnanannsasnsnannssnaaa M2-28

4. Differences between Modula-2 and PasCal .ccesscassancscncannsass M2-31

4.1. Vocabulary and lLexical Differences ccsvssssssseaasssasnasscas M2-31
4.1.1. IdentifierS cusesssassscnussannanansesensnsnsonncesnn M2-31
4,1.2. Reserved Words, Symbols and Standard ldentifiers .cce.o M2-32
4.1.3. CoOmMMENtS vveeaaanncccananssscasssassnnnsnssannceanss M2-33

4,2. Declarations ..e.esssscesaasasarsassessasnsaasssnssnccnsnsass M2-34
4.2.1. Declaration Order ...ccesssscasssscscssnacsancasancs M2-34
4,2.2 Constant Declarations cc.cveeunscassnsnnnnnnncnaanana M2-34
4,2.3. Type DeclarationS ececeescssscsssaassscssnanssscsnans M2-40
4.2
4,2
4,2

.4 Variable Declarations .c.eecscscsssnsssssscanascncanse M2-46

5. Procedure Declarations sueececessasnnsnessacasenssnce M2-46
-6- MOdUle DeC'aration EeE s EERES ¥ B P S EERSEEREEPNEODEDE TR M2—50

Introduction to Modula-2
Tablé Of Contents
Page M2--2

4-3.

4.4.

4-5.

CompatibilitieS eveeusssesssnnnannsanrsnnsscsasaannansnsnmns

EXpPressionS sussvescsssosvonaonssssoncanasnnsnnsnsnnaneannsnss
4.4.1, Operands voesvecesssonvesnnsonannaansnnnnensnnnnns
4.4.2. Operators .c.vneevenvacsussanassnasansnanns
4.4.3. Fufiction Operands sevssvassecccssessusannnsscssananas
4.4,4, Mixed EXPressionS weveseescoessensasasssessnssnsansa

StatementS cuvuvessonssncannsanasnnnnnnsnsasssnansaneansanss
4.5.1. Statement SequUENCEeS svvecvnussrccasannanananssnansns
4,5.2. ASSIGNMENLS svesesnnsvnsnsssarsssnsnacsnsnsnneansanss
4.5.3, Procedure CallS ..cssvsenscnnsnnnncnunnnnsnnssnnnnns
4.5.4., IF Statement sccvvenevasnvensrnsunnsnsnnnsasnannns ..
4.5.5, CASE Statement cveusvucevecsvansvsnnnsnsssannssnnns
4.5.6. WHILE Statement s.ccevereenonsnconansncsensnsnnnnnsns
4.5.7. REPEAT Statement evuvsensancsnnascsnnsnnnsansnnsnns
4.5.8. FOR Statement .s.cceescsessnnsensvennnssnssnansannss
4.5,9. LOOP and EXIT Statements v..cvioevsvessccansnsnsencs
4.5.10. WITH Statementvcne.
4.5.11. RETURN Statement

M2-51

M2-53
M2-53
M2-53
M2-56
M2-56

M2-57
M2-57
M2-58
M2-58
M2-59
M2-60
M2-61
M2-61
M2-61
M2-62
M2-63
M2-64

Introduction to Modula-2
Introduction.
Page M2-1

INTRODUCTION TGO MODULA-2

The catchwords of this part are:

- EBNF-Notation
- Comparison Modula-2 - Pascal
- Modula-2 for Pasca! Programmers

Chapter 2. Introduction

Up to now, you learned about the requirements of this package towards your
computer system, about its features, the licensing terms, backup and |mp|ementat|on
Perhaps you did a little sample run.

Now, you will learn about the EBNF notation used not only throughout this manual
but also in most Modula-2 books. Later, the new concepts of Modula-2 as well as the
lexical and syntactic differences between Pascal and Modula-2 are pointed out.
Although you probably don't know the new syntax, there are several examples of
small Modula-2 programs. Because the syntactic differences to Pascal aren't that
great, you shouldn't have any difficulties understanding them.

This introduction is mostly oriented towards the Pascal programmer. It is desirable
for you to buy an introductory text about Modula-2. Some of the books covering the
subject that are available at publishing time of this manual are listed in the
bibliography appendix.

Modula-2 may be considered as a successor to Prof. Wirth's famous Pascal language.
Its main differences from Pascal are

- the lack of 'built in' 1/O operations leading to greater freedom
about how to implement it and to a somewhat more awkward usage
of 1/0O because you cannot write INTEGERs and STRINGs in the same
Write statement. This does not affect code effectiveness. It simply
means a work shift from the compiler back to the programmer,
freeing the compiler from system dependency.

- an improved syntax. The very often Pascal-BEGIN..END constructs
for compound statements aren't needed anymore.

Introduction to Modula-2
introduction
Page M2-2

- new concepts as Separate Compilation and Modules, Procedure
Types, etc. The first two allow the modularization of large concepts
without sacrificing the compiler's ability to type check the whole
program,

Additionally, Modula-2 provides some low level facilities that make life easier for
system programmers.

Most of these points will be covered in greater detail in the next subsections. First,
the new concepts are introduced, followed by an overview of the changed syntax.
Thereafter, a discussion of Modula-2's set of standard identifiers and standard
functions as well as the reserved words follows. For an explanation of Modula-2 1/0,
refer to the Standard and Utility Library Descriptions in the Implementation Guide.

introduction to.Modula-2
EBNF - A Way to Describe a Syntax -
Page M2-3

Chapter 3. EBNF - A Way to Describe a Syntax

EBNF stands for Extended Backus MNaur Form. This is a notation that provides a
convenient and clear way to describe a systematic syntax. Programming languages as
Modula-2, Pascal, ALGOL etc., are good samples of languages with a systematic
syntax, but you can also use EBNF for instance, to describe the form of some input to
your own programs. This helps you to speed up programming of these input routines.
It also prevents you from overlooking problems with special cases. As another added
bonus, it leads to a clear program structure.

NOTE - This is not a scientific explanation of the EBNF notation. if ydu
already know EBNF, you can skip this chapter.

The EBNF notation can be thought of as of a language which provides some basic
elements, some constructs, plus macro definitions.

As a basic element, you can use one of the following:

- a literal, i.e. a string constant enclosed in quotes (') or double
quotes ("). Examples: "A"Y, .Y, V=", ,

- a symbol that stands by itself for a string constant, whose quotes
are left away just for convenience. To mark symbols clearly, it is
agreed upon to write them in uppercase letters only. In Modula-2,
such symbois are for example BEGIN, NOT, PROCEDURE.

The official terminology for basic elements is terminai symbols or just terminals.

There are different kinds of constructs available:

- The selection construct allows to offer more than one choice as a
replacement for a given element. It is expressed by a vertical bar
("["). Example: Let's assume that an answer might be either "Y"
denoting Yes or "N" denoting No. So, we might write: Answer = "Y" |
"N". This actually is a complete macro definition, which telis us that
any occurence of the identifier Answer can be replaced by either
||Yl| or IlNII.

- repetition constructs allow to repeat a given sequence either zero
or one time, or an arbitrary number of times including zero times.

The zero or one time repetition is denoted by enclosing the
sequence to be repeated in brackets ("[", "]"). Example: ["warm "]
"water" can result in either "warm water" or just "water",

introduction to Modula-2
EBNF - A Way to Describe a Syntax
Page M2-4

The zero or more times repetition is expressed by enclosing the
items to be repeated in braces ("{", "¥). An example could be:

underline = {" "}, So, underiine can be replaced for example by
" 9

- just to clarify which elements belong to which others, it is allowed
to set brackets ("(", ")") around groups of symbols, constructs and
elements that pertain to each other.

Macro definitions allow us; tc "codename" & seguence. This sequence therefore can
be replaced by its codename. A macro definition takes the form

MacrcName "=" MacroSubstitution "

An example:

Hat = "Stetson" | "Sombrero” | "Tophat" | Cap.

Here, we see that Hat can be replaced by either one of the three literals ("Stetson'
"Sombrero" or "Tophat”) as weli as by the macro Cap, which is defined elsewhere.

The official term for such a macro definition is a production, A production produces
the name on the left side of the equal sign. The macro name is referred to as a
nonterminal symbol or just a nonterminal.

A sequence consists of zerc or more elements and constructs.

Elements themselves can be either a basic element or a2 macro name.

So we see that we are back at the start: We're talking about things that we already
defined. This means that this definition is self-contained. It does not rely on
anything from the outside. To make a proper description of for example a
programming language syntax, it has to be selfcontained. Otherwise, there would be
no end to the description, leading eternally to productions that use other unknown
nonterminals. Although this seems to be the case in some modern language stemming
from France, it is definitely not the case in Modula-2.

Introduction to Modula-2
EBNF - A Way to Describe a Syntax
Page M2-5

As an example, let's express the EBNF syntax in EBNF itself:

Production = identifier "=" Expression "." .
Expression = Term {"|" Term} .
Term = Factor {Factor} .
Factor = ldentifier | """ String "™ | """ String " |
"(" Expression ")" | "[" Expression "]" |
"{" Expression "}" .
Identifier = String .
String = Char {Char} .
Char = AN ! e I nzn l Hgh i o | Wyt I nom I o I ngn

The last production, Char, uses some imperfect EBNF shorthands: It is supposed that
you yourself logically expand "A" i .« | "Z" to be one of the uppercase alphabetic
letters, etc.

For a complete EBNF description of the part of the Modula-2 language impiemented
by this package, please refer to the appendix Language Description.

That's all there is to say about EBNF. Now, let's turn back to the main subject: The
comparison between Pascal and Modula-2.

Introduction to Modula-2
New Concepts
Page M2-6

Chapter 4. New Concepts

In this chapter, you will learn about modules and separate compilation as
well as some other noteworthy new concepts in Modula-2. With respect to
our implementation, some of the concepts contained in Modula-2 on other
systems aren't discussed. '

Modula-2 is a general purpose language that is - among others - ideally suited for
the development of large program- and programming systems; systems programming
was also one of Modula-2's design goals. It achieves the necessary flexibility by
extending its predecessor Pascal upwards as well as downwards.

The upward extensions are:

- Separate Compilation

- Modules

- Procedure Types
Downward extensions include:

- Relaxed Type Checking

- Low Level Machine Access

Additionally, there are several general improvements over Pascal. Among these are:

- Relaxed Declaration Order

- Constant Expression Evaluation

- Short Circuit Expression Evaluation
- Open Array Parameters

introduction to Modula-2
New Concepts
Page M2-7

Section 1. Modules and Separate Compilation

It is difficult to talk about Modules without mentioning Separate Compila-
tion in the same breathstroke. Therefore, the next few paragraphs will
give you a basic understanding of separate compilation before the simpler
to understand module concept is explained in detail.

In several Pascal dialects, there exist possibilities to split programs apart into
different 'modules'. These modules are compiled as if they were compiete programs
just lacking the main program. You can freely use procedures declared in one such
'moduie’ in others. All you have to do is to declare how this procedure looks like and
indicate that it is 'external'. So, you provide the compiler with any and all
information about that procedure. If you make an error in this external procedure
declaration, well, that's it, you wanted it, you got it...

Such 'knowledge transfer' between your program parts is called independent
compilation. The compiler totally relies on your information. 't has no means to
verify if you actually gave a proper definition of that procedure.

Modula-2, in contrary, distinguishes between two categories of modules: Program
modules (which contain main programs) and library modules. It demands that each
library module (one whose parts can be used by one or several other modules) be
specified in two parts: A definition module, that contains the interfaces of all
procedures, variables and types that are to be known by the environment of that
module, and an implementation. This implementation is checked during its
compilation with its corresponding definition for matching definitions of the exported
objects. There may even be totally different implementations that comply to the
same definition, i.e. offering the same interface. A good exampie to this fact is given
in N. Wirth's Programming in Modula-2, on page 82 ff. For full type checking, it is
also necessary that you have to announce from where you want an object to be
imported. Here, too, the compiler checks your usage of an imported (or external)
object against its definition. So, there is no way to foo! the compiler for example
about a procedure's parameters to allow ‘'fancy' type transfers.

This kind of compilation, in which the compiler is in control of the external objects,
is called separate compilation. It is a tool that is indispensable for the successful
mastery of large programming projects, i.e. projects that are not carried out by
single individuals, but by groups of programmers.

Introduction to Modula-2
New Concepts
Page M2-8

1. Modules

As mentioned above, Modula-2 is well suited for large programming projects because
it allows that large programs are split into possibly small units that handle a
specific, well defined part of the problem. These units are called modules.

a) Syntax

A module has a syntactic structure that is quite similar to that of a Pascal
procedure. It consists mainly of a parameterless heading, the import and export
lists, followed by the declarations of local objects (i.e. constants, types,
variables, and procedures). The end of a module builds its body, i.e. its statement
part.

An example:
MODULE Demo; (* parameterless heading *)
FROM AnotherModule IMPORT (* import lists *)
FirstObject, SecondObject;
IMPORT MyModule;
EXPORT MyObject; . (* the export list *)

CONST (* local object declarations *)
MyValue = 100;

TYPE
Recs = RECORD
a: INTEGER;
x: CARDINAL;
END;
VAR

MyObject: CARDINAL;

BEGIN (* module body, statement part *)
MyObject := MyValue;
END Demo.

Introduction to Moduia-2
New Concepts
Page M2-9

Although the syntax is procedure-like (except for the fact that import and export
lists are present), there exist severe semantic differences. These differences get
discussed in detail now.

b) Visibility and Scope Control

These differences come mostly from differing visibility rules between procedures and
modules. In Modula-2 - as in Pascal - the visibility rules for procedures can be
formulated as follows:

- Each procedure generates a new scope. Each identifier defined in a
given scope is visible in this scope.

- Objects defined within a procedure (or scope) are invisible outside.
- Objects visible outside a procedure (or scope) are also. visible inside,

unless an object with the same name is defined within the procedure
(or scope).

To extract the important information, this means that each identifier has to be
unique in its scope.

An example program fragment:

VAR
outSide, inSide, noSide: BOOLEAN;

PROCEDURE MakeNewScope;
VAR
inSide, mySide: CHAR;

(* inSide and mySide are visible in MakeNewScope (local objects) *)
(* outSide and noSide are visible in MakeNewScope
and declared outside *)

BEGIN
END MakeNewScope;

(* outSide, inSide, noSide and MakeNewScope are visible *)
(* outside MakeNewScope *)

Introduction to Modula-2
New Concepts
Page M2-10

The visibility rules for modules are both more restrictive and more general. Ex-
cept for the standard objects (i.e. INTEGER, NEW, ...), the visibility of all objects
is explicitly controlled by import and export lists.

These rules are:

Export: An object defined inside a module is visible outside only if it is
exported.

Import: An object visible outside a module is directly visible inside on-
ly if it is imported.

Exception: Standard Objects are implicitly visible inside a module.

Possibly you noted the word 'directly' in the import rule. This is necessary, because
there are two kinds of imports: The first one is called unqualifying import. This is
achieved with an import list of the form

FROM Module 1MPORT
Object, ... ; (* provided 'Object' is exported by 'Module' *)
or
IMPORT Object, ... ; (* 'Object' is directly visible in environment *)
These are the normal cases. Objects imported this way can be referenced directly by

their names. The second import list implies that modules can be declared local to
other modules. In fact, they can even be declared local to procedures.

The other form of import is just called import. This is done by using an import list of
the form

IMPORT Module;

In this case, you can reference any object exported by that module by using a
qualified identifier to access it. These qualified identifiers obey to the following
convention:

Introduction to Modula-2
New Concepts
Page M2-11

Qualldent = ldent {"." Ident} .

Examples of qualified identifiers:

MyMod.MyObject
InOut.WriteString
Tables.LookUp.Find

NOTE - Every element except the last identifier in such a qualified identifier
has to be a module identifier. This is intuitively clear because no object
but a module can export anything. The only exception is the access to an
imported record variable field.

Import without unqualification serves among other things to have different objects
from several modules coexist in the same module at the same time without name
conflicts.

Each module has at most one export list. In this export list, you cannot use any
qualified identifiers. This means, that you cannot export objects you imported
explicitly.

The export list can take one of two forms:

EXPORT Object, w. 3

This form is called unqualified export. All objects exported that way can be
accessed directly by their names in the environment of the exporting module.
if the environment is another module, it can reexport this objects as if they were
defined by itself. It also exports them indirectly by exporting the module identifier
also in unqualified mode.

The second form of an export list, called qualified export, looks as follows:

EXPORT QUALIFIED Object, ... ;

All of the exported objects have to be imported by every other module that will use
it, including the environment of the exporting module. So, even the environment
knows only the module's name. The import can use either unqualification as explained
above, or use the FROM clause in the import list. For separately compiled modules
(see later), this is the only allowed way to export.

Introduction to Moduia-2
New Concepts
Page M2-12

NOTE - Neither an import nor an export list may contain qualified identifiers.

¢c) Variable Existence

In Pascal- as well as in Modula-2 procedures, tocal variables (and all other local
objects) officially start to exist on procedure entry, i.e. when the procedure's
execution starts. They cease to exist as soon as the execution of the procedure they
betong to ends.

Comparing this to the visibility rules mentioned earlier in this section, this leads to
the conclusion that these local objects exist as long as they are visible and therefore
accessible.

This leads to several problems. As an example, look at a random number generator
that is formulated as a procedure.
MODULE UseRandom;

VAR
randomNumber: CARDINAL;

PROCEDURE Random(): CARDINAL;

CONST
Increment = 7227;
Range = 1717;
BEGIN
randomNumber := (randomNumber + Increment) MOD Range;
RETURN randomNumber;
END Random;

BEGIN (* main program ¥)
randomNumber := 1234;
.. := Random();

END UseRandom.

As you see, every procedure can tamper the value of the 'secret' random number.
You cannot simply declare the variable inside the procedure. Although it would have
a 'random' value on each call of the procedure, you may make any bet that such a
random generator is not random enough just because it obeys the famous Murphy's
Law ...

Introduction to Modula-2
New Concepts
Page M2-13

A typical Modula-2 approach to this random number generator problem is done as
follows:

MODULE UseRandom;
MODULE RandomGenerator;
EXPORT Random;
VAR randomNumber: CARDINAL:

PROCEDURE Random(): CARDINAL;
CONST Increment = 7227;
Range = 1717;
BEGIN
randomNumber := (randomNumber + Increment) MOD Range;
RETURN randomNumber;
END Random;

BEGIN (* RandomGenerator *)
randomNumber := 1234;
END RandomGenerator;

BEGIN (* main program *)
... = Random();
END UseRandom.

This can be done that way because module-local objects exist as long as the
module's environment exist. The environment is either another module or a
procedure.

You certainly wonder about the use of the module body that isn't called explicitly
but has to be executed to make the random number generator work correctly. This is
explained in the next section.

Introduction to Modula-2
New Concepts
Page M2-14

d) Module Bodies and Initialization

Modula-2 sets the following rule:

A module's body (statement part) is executed when the module's
environment begins to exist. Thus, the body is also called the module's
initialization.

NOTE - A module's body is treated by the compiler like any other procedure
except for the fact that it can't be called explicitly and that the
compiler inserts a call to that initialization 'procedure' which ensures
that it is executed just before its environment is executed.

In the above example, the actual compiled main program code of UseRandom looks as
if you had written
BEGIN (* UseRandom *)
CALL RandomGenerator; (* inserted by the compiler *)

.« := Random(); (* your code *)
END UseRandom.

In separately compiled modules, this initializations are handled by the linker.

e) Final Comments on Modules

The general idea behind the module concept is to enable you to package things
together that belong together. For this reason, a relaxation of Pascal's stiff
declaration order rule was incorporated in Modula-2. Declarations have to obey the
following rules:

Introduction to Modula-2
New Concepts
Page M2-15

- Every object (i.e. constants and types) has to be declared prior to
it being used in declarations.

- The above rule is relaxed for pointer declarations: A pointer refe-
renced type can be defined later in the same scope. This is as it
was in Pascal. '

- Declarations can occur in any order; you can freely mix the
different types of declarations (CONST, VAR, TYPE, PROCEDURE,
MODULE) to group related items.

There are some more things to point out, most of them either clarifications or special
cases. Please keep these in mind:

- exporting (importing) a record type makes its fields visible.

- exporting (importing) an enumeration type exports (imports) its
constants, too.

- exporting (importing) a module that exports in unqualified mode,
exports its objects also. '

- exporting (importing) a procedure does not automatically export
(import) this procedure's parameter types. You have to export
(import) them separately.

NOTE - The standard objects are imported into every module. Therefore, they
are also referred to as pervasives. This feature makes it impossible to
redefine a standard identifier inside a module. In most implementations,
this can be done inside procedures. In our implementation, this holds only
for standard types, not for standard procedures.

The module concept itself wouldn't be flexible enough to allow efficient realization of
large projects, since it does not allow to split a program in a controlled way into
several modules. Therefore, another important concept wiil be introduced right now.

introduction to Modula-2
New Concepts
Page M2-16

2. Separate Compilation

A Modula-2 compiler is said to accept compilation units. As mentioned
earlier in the short overview, there are two kinds of compilation units:
program modules and library modules.

Thereafter, these compilation units are also called separate modules or modules.
For modules nested within a separate module, the term local module will be used.

You can partition a program into separate modules on the global level only. It is
impossible to pack a local module into a separate file and compile it this way.

The environment of a separate module is identified as the universe in which all
separately compiled modules are embedded.

Program modules consist of a single text file; they are much like a Pascal program.
When compiled, they constitute a Modula-2 program's executable main program. A
program module cannot have an export list. This is evident, because there's nobody
who could use the exported objects. It can have import lists, though. These serve to
import objects provided by library modules. These library modules were compiled
separately. Each implementation of Modula-2 provides some standard library modules
as defined by Prof, Wirth in Programming in Modula-2. More information about this
modules can be found in the Implementation Guide.

Some program module examples:

MODULE Hello;

FROM Terminal IMPORT
WriteLn, WriteString;

BEGIN

WriteString('Hello,'); WriteLn;

WritelLn;

WriteString(' Welcome to Modula-2 on CP/M !'); WriteLn:
END Hello.

Iintroduction to Modula-2
New Concepts
Page M2-17
MODULE QualifiedHello;

IMPORT Terminal;

IMPORT 1nQut;
VAR
ch: CHAR;
BEGIN

Terminal.WriteString('Hi there, are you a Modula-2 fan? ');
Terminal.Read(ch);
IF CAP(ch) = "Y' THEN
Terminal.WriteString('Yes');
Terminal.WritelLn;
Terminal.Writeln;
Terminal.WriteString('glad to hear it!');
Terminal.WritelLn;
ELSE
InOut.WriteString('No ??77'");
InOut.WritelLn;
InOut.WriteString(' let me persuade you ...');
END;
END QualifiedHello.

The first example uses unqualifying import, whereas'the second demonstrates what
module import and unqualification is good for.

Library modules, on the other hand, consist of two separate text files. These two
parts are called the definition module and the implementation module,
respectively.

The definition module serves to define all objects of a module that are to be visible
from the outside, i.e. what can be imported by other compilation units.
Implementation modules contain the actual code of library modules.

Definition and implementation modules have to exist in pairs that bear the same
module name. They are related to each other by the compiler.

Introduction to Modula-2
New Concepts
Page M2-18

a) Definition Module Syntax

A definition module consists of a heading of the form 'DEFINITION MODULE
ModuleName;', import lists, the export list, and declarations. CONST, TYPE and VAR
declarations can be made as explained above; PROCEDURE declarations, however,
consist only of the procedure heading, i.e. the PROCEDURE symbol, the name and the
parameter list.

One extension regarding the type definition is a so called opaque type definition.
This definition has the form

TYPE Typeldent;

This allows to keep implementation details of specific types hidden from the user.
There is one restriction to it: A hidden type is 2 bytes long. This implies that it
might be implemented later as either a pointer or a standard type such as CARDINAL
and INTEGER.

Neither procedures nor the module itself can have a body; furthermore, no local
modules are allowed within a definition module.

NOTE - A definition module can export in qualified mode only. This avoids
name clashes in the universe.
A sample definition module might look like:
DEFINITION MODULE CharlQ;
EXPORT QUALIFIED
Write, WriteString;

PROCEDURE Write(ch: CHAR);
PROCEDURE WriteString(string: ARRAY OF CHAR);

END CharlO.

Introduction to Modula-2
New Concepts
Page M2-19

b) Implementation Module Syntax

The implementation module closely resembles a program module. Except for. the
symbol IMPLEMENTATION that precedes MODULE, it is syntactically identical. It
also cannot have an export list. Two major differences exist, though: All the
constants, variables and types declared in the definition module, are present in the
implementation module without you having to redefine them; the procedure headings
in the definition module have to be matched by procedures bearing the same name
and an identical parameter list. The parameter identifiers do not have to match, but
the parameter types and kinds (VAR or non-VAR) must.

The implementation module to the definition sample:

IMPLEMENTATION MODULE CharliG;

FROM ASCII IMPORT
nul;

FROM OpSys IMPORT
BdosFunctions, Bdos;

PROCEDURE Write(ch: CHAR); AT

VAR

return: CARDINAL; (* dummy return value *)
BEGIN

Bdos(crtOut, ORD{ch), return);
END Write;

PROCEDURE WriteString(string: ARRAY OF CHAR);
VAR ,
¢c: CARDINAL;
BEGIN
c = 0
WHILE (c <= HIGH(string)) AND (string[c] # nul) DO
Write(stringlc]l);
END:
END WriteString;

END CharlQ.

NOTE - Objects that were imported by the definition module aren't automati-
cally avaitable in the implementation module; you have to reimport them.
In contrast to this behaviour, all objects declared within the definition
module are directly available.

Introduction to Modula-2
New Concepts
Page M2-20

As in local modules, implementation module bodies serve as initializations. They are
executed before the main program is started. The order of execution of these
initializations is set up by the linker.

NOTE - Mutually importing library modules dictate arbitrary module initiali-
zation order. In such cases, the module's initializations cannot depend on
objects imported from the other module. They generate so called circular
references.

NOTE - Types defined in opaque mode in the definition module have to be

redefined uncovering their structure in the implementation module.

Section 2. Constant Expression Evaluation

Constant expression evaluation is not really a new concept; it is done in most
compilers that run on mini- or nizinframe computers. On micros, C compilers and
some others do already constant expression evaluation. Most Pascal compilers don't.

In Modula-2, this is defined to be a language feature. You can use this facility to
parameterize your program sources better than in Pascal.

Have a look at:

CONST
bufSectors = 8; (* 8 128 byte sectors per buffer *)
sectorSize = 128; (* CP/M sectors are 128 bytes *)

bufBytes = bufSectors * sectorSize;
bufHilndex = bufBytes - 1;

By changing only the constant 'bufSectors', you can accommodate different buffer
sizes. In Pascal, you would have had to change 'bufSectors', 'bufBytes' and
'bufHiindex' to achieve the same effect!

This feature is also present in statements, not only in declarations. This leads to
more efficient code because everything that can be evaluated at compile time is
evaluated at that time, not in runtime as in several Pascal implementations. The code
thereby gets smaller and faster.

introduction to Modula-2
New - Concepts
Page M2-21

Section 3. Short Circuit Expression Evaluation

In a correct Pascal implementation, you cannot write the following IF statement
without getting an error during the compilation:

IF (x # NIL) AND (x".string = '...a') THEN
(* your code *)
END:;

The error would be generated, because, if x was NIL, the second expression woulid

make an illegal memory access. In mainframe computers, this would halt or crash the
program.

In most microcomputer Pascal imptementations, the compiler doesn't bother about
such statements and lets you modify the memory addressed by a NilL valued pointer.

fn Modula-2, the language definition states that the above IF statement is
transformed to the following sequence:

IF x # NIL THEN

IF x~.string = '....' THEN
(* your code *)
END;
END;

The program continues after the IF statement, as soon as the boolean expression
evaluates to FALLSE. If the pointer 'x' is NIL, then the second part of the condition
hasn't to be evaluated at all, because the condition is certainly FALSE (the boolean
expression can be true only if both parts are true, if the AND operation is used).

This rule works also for conditions that are combined by OR. !n that case, the actual
code is executed as soon as one of the conditions ORed together evaluates to TRUE.
This is as if you had a series of IF .. THEN ELSIF .. THEN .. with the same code
executed in the IF as well as the different ELSIF branches.

So, the evaluation of the expression is 'short circuited' as soon as its result can be
determined. This not only avoids the abovementioned illegal memory accesses, it also
accelerates a program's execution, although the programmer hasn't to care about
that property.

In spite of this simplification, it is often useful to pay attention to the order in
which the boolean expressions are listed. Watch for an order whose result can be
determined as soon as possible. To accomplish this, set the conditions that decide the
result most often in front, whenever it is feasible to do so. Correctness and security

Introduction to Modula-2
New Concepts
Page M2-22

should always take the lead over speedup attempts. in the above case, a reverse
order of the conditions could be faster, but would lead to iliegal memory accesses.

Section 4. Open Array Parameters

The ANSI and ISO Pascal Standards contain the so called conformant array scheme,
This scheme allows to. write array-handling procedures that aren't bound to a single
type of array, but rather only to arrays with the same number of indices, index
types, and element types. In the conformant array scheme, you can retrieve the
lower and the upper bound of each dimension.

Modula-2 uses the Open Array scheme for such applications. This mechanism has some
limitations compared to the above: You can have only one variable dimension, and
instead of providing both the lower and the upper bound of each dimension, an index
of the form m..n is translated to Q..n-m and via the HIGH standard function, you can
retrieve the upper bound value (m-n). You can also use the SIZE standard procedure
to determine the size (in bytes) of such an open array parameter. You can access
an Open Array Parameter but element by element. This means , an assignment
like

string := 'string constant';

is illegal if string is an Open Array Parameter.

Examples:

TYPE
Alfa = ARRAY [0..9] OF CHAR;

PROCEDURE Tabulate(name: ARRAY OF Alfa; value: ARRAY OF REAL);
VAR
iz CARDINAL;
BEGIN
IF HiIGH(name) # HIGH(value) THEN
WriteString('Something's rotten in the state of Denmark!');
ELSE :
FOR i := 0 TO HIGH(name) DO
WriteString(namel[i]);
WriteString(" = ');
WriteReai(value,20);
END;
END;
END Tabulate;

introduction to Modula-2
New Concepts
Page M2-23

As you see, an Open Array Parameter is always specified in the form
ARRAY OF Type

where type is any predeclared or user-defined type. Naturally, there are also
variable Open Array Parameters.

So, whereas Pascal specifies but one parameter mode, i.e. VAR or value, Modula-2
adds a second, Open Array or ‘normal' parameter.

There exists one special kind of Open Array Parameter, the ARRAY OF WORD. It is by
definition the universal parameter. Any variable, expression or constant may be
passed to it. There are some rufes to remember, however:

NOTE - TSIZE(WORD) = 2. This means that an ARRAY OF WORD has twice as
much elements as actual storage, i.e. you move through the array not
word by word, but byte by byte! Do access the low byte of each word
only! It is suggested to use a POINTER TO CHAR to handle this access.
The above said leads to the conclusion that for all ARRAYs OF WORD, the
equality

HIGH(arrayOfWord) + 1 = S1ZE(arrayOfWord)

b

holds.

This seems to be strange, but that is the way this problem is handled on most byte-
addressing machines like PDP-11, Motorola 6809 and 68k, the Intel 8086, 8088 family,
etc. The ARRAY OF BYTE would result in more logic behaviour, but since the world
spins around Prof. Wirth and not the other way around, this proposition was not
enclosed in the revisions and amendments to Mocdula-2 which set the new standard.

introduction to Modula-2
New Concepts
Page M2-24

Section 5. Procedure Types

in Pascal and most other programming languages, procedures are thought of as
program parts exclusiveiy. They consist of a text that specifies actions to be
performed on data objects, i.e. numbers, characters, etc.

Modula-2 goes one step beyond: You can think of procedures as a special kind of
constants. By introducing the associated types and variables, Modula-2 relieves the
strong distinction between code and data common to most oilder high level
programming languages. So, the procedure types and variables represent a step into
the direction of object oriented languages.

The uses of this new concept are manyfold. The simplest ones are for instance user-
specifiable error handlers in low level modules. This allows for adaptabie error
handling, although errors are still handled on the level where they were generated.
The higher levels of a program therefore don't have to care about handling errors
that occured in the lower levels. This most often simplifies the resulting code
drastically. Other uses are for instance general sort procedures, to which you can
specify the comparison operator by a procedure variable, etc. More advanced uses
include processes and user installable device drivers.

To declare a procedure type, you have to specify the number of parameters, their
types and modes (VAR or not, Open Array or not). in the case of a function
procedure type, the result type has to be declared, too. In difference to normai
procedure heading declarations, the parameter list inciudes but the types, and no
names of the formal parameters.

An example:
TYPE

TrigFunction = PROCEDURE(REAL}: REAL;

This procedure type is compatibie with the trigonometric functions as implemented in
the MathLib library module, i.e. sin, cos, and arctan.

You can declare variables that are of type TrigFunction, now:

VAR
func: TrigFunction;

introduction to Modulia-2
New Concepts
Page M2-25

Let's assume you wanted to create your own trig function table. The domain that
interests you is 0.0 up to Pi/2 in different increments.

MODULE TrigTables;

FROM InQOut IMPORT Write, WriteLn, WriteCard, WriteString;
FROM ReallnOut IMPORT WriteReal;
FROM ASCI | IMPORT ff;

FROM MathLib IMPORT sin, cos, arctan;

TYPE
TrigFunction = PROCEDURE(REAL): REAL;

PROCEDURE PrintTable{(fn: ARRAY OF CHAR; f: TrigFunction;
lowLimit, hiLimit, stepWidth: REAL);
BEGIN
WriteString(fn); WriteString(' tabulated from ');
WriteReal(lowLimit, 0); WriteString(' up to ');
WriteReal(hiLimit, 0); WriteString(' in steps of ');
WriteReal(stepWidth,0); WritelLn;
WritelLn;
WriteString('argument value'):
WriteString('------ e B H
WHILE JowLimit <= hiLimit DO
WriteReal(lowLimit,18);
WriteReal(f(lowLimit),18); (* call procedure here *)
WritelLn;
IF lowLimit + stepWidth = lowLimit THEN
WriteString('stepwidth too smali');
HALT:
END:;
lowLimit := lowLimit + stepWidth;
END;
END PrintTable;

BEGIN (* TrigTables *)
PrintTable('sine', sin, 0.0, 3.14159 / 2.0, 0.1);
PrintTable('cosine', cos, 0.0, 3.14159 / 2.0, 0.1);
PrintTable('arctangent', arctan, 0.0, 0.9, 0.1)
END TrigTables.

There are many more applications for procedure types.

introduction to Modula-2
New Concepts
Page M2-26

NOTE - When calling procedure variables, specifying the parameter list is
mandatory, even if it is empty. This allows the compiier to distinguish
procedure assignments from calls. For normal procedures, parameter lists
have to be specified only if it is a function procedure.

WARNING - You cannot assign standard procedures like INC, DEC, etc. to
procedure variables or parameters. Because they usually apply a different,
faster parameter passing mechanism, they are incompatible with procedure
variable parameter passing sequences. There is, however, a simple way to
circumvent this restriction called standard procedure packaging.

You specify a procedure that in turn calls the desired standard procedure:

PROCEDURE Dec(VAR x: CARDINAL);
BEGIN

DEC(x);
END Dec;

This applies to all standard procedures, i.e. procedures that are part of
the language and not declared in a standard or utility module, or by your-
self,

Section 6. Low Level Machine Access

Modula-2 provides several facilities to allow low level, machine dependent
programming. These are:

- Type transfer functions that allow to circumvent the normal type
compatibility rules.

- Absolute addressed variables.

- The pseudo-module SYSTEM provides data types to allow coping
around with the machine at lowest level. These facitities include
machine data types and functions to determine the size and location
of variables.

WARNING - Please restrict the use of these facilities to single modules. Any
usage of these facilities guarantees that a module is non-transportable to
other processor types, eventually even to other computers using the same

processor.

Iintroduction to Modula-2
New Concepts
Page M2-27

1. Type Transfers

Normal type identifiers may be used as type transfer functions. These transfers of
this form, however, can occur only between types that require the same amount of
storage for their representation, i.e. between INTEGERs and CARDINALs (which both
use two bytes), but not between CARDINALs and CHARacters (characters occupy
only one byte).

The standard type transfer functions ORD, ODD, CHR and VAL should be used instead
of the above scheme whenever possible. They are more respectable than the others,
because they do not imply any assumptions about the actual machine level
representation of any data type.

NOTE - This implementation restricts the use of these type transfers somewhat:
it is impossible to convert arrays and records into scalar types and vice
versa, no matter if the sizes of the conversion argument and result type
are the same or not.

Type transfer function examples:

MODULE TypeTransferDemo;

TYPE
FourByteRec = RECORD
i: INTEGER;
b: BOOLEAN;
ch: CHAR;

END;
FourByteArray = ARRAY [0..3] OF BOOLEAN;

VAR
it INTEGER;
¢: CARDINAL;
arr: FourByteArray;
rec: FourByteRec;

BEGIN _
Cc = ¢ * CARDINAL(i); (* just to get a legal expression *)
arr := FourByteArray(rec);

END TypeTransferDemo.

Introduction to Modula-2
New Concepts
Page M2-28

2. Absclute Variables

Another facility allows to place variables at fixed memory locations. The declaration
of such a variable gives the variable's address as a cardinal constant immediately
after its name in square brackets.

An example:

VAR
|OByte[3H]: CHAR: (* CP/M's 1/0O byte *)
curDrv[4H]: CHAR: (* currently selected drive as OH..OFH *)

NOTE - If you are in a CP/M environment, there are several points to watch.
Do not use the zero page {i.e, addresses OOH up to 100H) or addresses
higher than the contents of memory cells 6 and 7 indicate on program
startup, if it isn't for using CP/M facilities. The areas used by CP/M are
the warm boot jump (OH..2H), the 1/0O byte (3H), the currently logged
drive (4H), the CP/M BDOS jump (5H..7H), the two CP/M default FCB and
file name areas(5CH..7TDH), as well as the command line tail buffer
(80H..0FFH). You can hurt your system by tampering with these variables
inadvertantly.

3. The Module SYSTEM

The module SYSTEM is part of every Modula-2 implementation. The system moduie
provides several types, functions and procedures. All of these objects allow access to
the machine level, and therefore are machine dependent. They (respectively their
implementation) may vary in different Modula-2 implementations.

NOTE - The system module’s exported objects have special properties. There-
fore, this module is known directly by the compiler. It is a so-called
pseudo-module which indicates that it isn't a normal library module. It is
built into the compiler.

Some SYSTEM procedures are compile-time functions, others are contained in the
compiler's support library, also known as the runtime library MODLIB, in our
implementation.

introduction to Modula-2
New Concepts
Page M2-29:

The foilowing types are provided by SYSTEM:

TYPE WORD;

size is 2 bytes:; it is parameter type compatible with any 2 byte
sized object. -

An example of WORD parameter usage:

PROCEDURE WriteWord{w: WORD);
BEGIN
PutByte(output, CHR{CARDINAL(w) MOD 256));
PutByte(output, CHR{CARDINAL(w) DIV 258));
END WriteWord:

This procedure can handle all 2 byte quantities; you may write
INTEGERs, CARDINALs, SETs etc. to a file with this single
procedure. ;

TYPE ADDRESS: POINTER TO WORD;

size is also 2 bytes; it is expression compatible with CARDINAL and
assignment compatible with pointers and cardinals.

An example:

PROCEDURE ZeroMemory(startAddress: ADDRESS;
length: CARDINAL);
VAR
i: CARDINAL;
address: POINTER TGO CHAR;
BEGIN
address ;= startAddress;
FOR i := 1 TO length DO
address™ := 0C;
INC(address);
END; (* FOR *)
END ZercMemory;

introduction to Modula-2
New Concepts
Page M2-30

SYSTEM provides these function procedures:

PROCEDURE ADR(VAR AnyVar): ADDRESS;
This function procedure returns the address of a variable.
An Example:
varAddress := ADR(x);
You can also specify record fields, array elements or variables
pointed to by a pointer.
PROCEDURE SI1ZE(AnyVar): CARDINAL;
This function procedure returns the size of a variable. SIZE has two
"modes of operation: On normal, fixed size variables or parameters,
it is a compile time function, so the size of 'AnyVar' does not
vary, i.e. is a constant. If AnyVar's type is a variant record, its
largest possible size is returned. On the other hand, if SIZE is
applied to an Open Array Parameter, the value returned is the size
of the actual parameter. which can be determined but at run time.
PROCEDURE TSIZE(AnyType, tag, tag, ...): CARDINAL;
As you can see from TSIZE's parameter list, you can use it to return
the size of a specific variant of a variant record by specifying the
desired tag fields. Unlike SIZE, TSIZE is always a compile time

function, so all the tagfields have to be constants; the size is
evaluated during the compilation.

Also contained in SYSTEM are

PROCEDURE ALLOCATE(VAR ptr: ADDRESS; size: CARDINAL);
and

PROCEDURE DEALLOCATE(VAR ptr: ADDRESS; size: CARDINAL);

Normally, these procedures are contained in a module called
'Storage'. For the compiler's bootstrap, they were entered into the
SYSTEM module. This leads to a faster calling sequence but also to
less flexibility. You cannot write your own storage management. This
situation will be remedied in a future release.

Introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-31

Chapter 5. Differences between Modula-2 and Pascal

This chapter is devoted to the explanation of the lexical and syntactical differences
between Pascal and Modula-2, To fulfill this task, it is divided into sections
describing the typographic (lexical) differences, the form of declarations and of the
statement parts.

NOTE - The information contained herein does not cover full Modula-2 syntax.
The syntax of the part that is implemented by our implementation can be
found in the Language Description appendix. General information is best
retrieved from the standard book, Programming in Modula-2 by Prof.
Wirth (see also Bibliography).

Section 1. Vocabulary and Lexical Differences

There are three different topics to be covered in here: ldentifiers, reserved words,
symbols and standard identifiers, and comments.

1. ldentifiers

In Modula-2, identifiers are case sensitive. This means the compiler differentiates
between identifiers like i and |, or between TERMINAL and Terminal.

NOTE - The longer you programmed in Pascal, the more problems you will have
with this rule. Your eye got acquainted to overlook different cases in
identifiers and therefore, you are likely to make case mistakes. Best cure
against such probfems is to make yourself ciear rules how to use this case
sensitivity and to follow them without compromise.

Introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-32

2. Reserved Words, Symbols and Standard ldentifiers

Modula-2 makes a difference between reserved words which are used to describe
language constructs (i.e. BEGIN, END, WHILE,...) and standard identifiers that
denote predeclared objects as TRUE, INTEGER, or ABS. Whereas reserved words are
'untouchable', you can redefine standard identifiers in procedures. So, you can
create a type INTEGER with the following declaration:

TYPE INTEGER = CARDINAL;

NOTE - Although this declaration is legal, it is not recommended to use such
practices.

NOTE - it is impossible to redefine any standard identifiers in modules, because
these standard identifiers are imported by the compiler without you being
able to intervene. Therefore, they are also referred to as pervasives.

WARNING - The Modula-2 System for Z80 CP/M does not allow for redefinition
of standard procedure or function identifiers; an error in the code
generation pass will be the result of such an attempt.

The following Pascal reserved words aren't present in Modula-2:

DOWNTO FILE FORWARD FUNCTION GOTO LABEL PACKED
PROGRAM

Some new reserved words are introduced:

BY DEFINITION ELSIF EXIT EXPORT FROM IMPLEMENTATION
IMPORT LOOP MODULE POINTER QUALIFIED RETURN

Introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-33!

Symbols are used for program punctuation (';', '.', etc.) or as operators ('=', '+', "*',

etc.}). In addition to all of Pascal's standard symbols, three new ones are introduced:

- The vertical bar ('I') serves as a CASE variant delimiter in variant
records as well as in CASE statements.

- The reserved word AND may be replaced by the shorter ampersand
("&').

- Inequality may be expressed by either '<>' as in Pascal or by "#' the

unequality sign.

In the programming examples of the next chapter, these symbols will be used every
now and then.

Have a look at the appendices Reserved Words and Symbols and Standard iden-

tifiers for a complete collection of these items.

3. Comments '

No curly braces ('{', '}') may be used as comment delimiters in Modula-2. The only
comment delimiters are '(*' and "*)'.

As opposed to most Pascal Compilers, in Modula-2, nested comments are allowed.
This means that you can outcomment whole sections of a program simply by setting a
pair of comment delimiters at the beginning and at the end of that section regardless
of any comments already present in the outcommented section.

For example, you may write

(*(*(*(* This comment is nested four times *)*)*) we're still in a
comment *)

introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-34

Section 2. Declarations

One of Pascal's declaration, the Label Declaration isn't allowed in Modula-2. This
enforces a more structured way of error escaping etc. It also greatly simplifies a
complete implementation. The RETURN statement can be used to replace the jump to
the label at the procedure end, leading to immediate return from a procedure or
function.

All other declarations are similar to Pascal, although most have minor differences to
their Pascal counterparts.

i. Deciaration Order

Opposed to Pascal, Modula-2 declarations can be made in any order. This means that
you can group related declarations together. The only rule you have to watch for is
that except for pointer base types (to which they point), every item has to be
declared itself before being used i1 a declaration,

2. Constant Declarations

Modula-2 offers several new features regarding constants: constant
expressions, typed set constants and other compatibility rules of set con-
stants are among them. A detailed explanation of these and other items
follows.

The most important difference between Pascal and Modula-2 is that the latter
supports constant expression evaluation by its definition.

Constant expressions may contain constants only. Every constant used on the right
side of a constant expression has to be declared before its usage in the expression.

introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-35

Some: examples:

ftemSize
Bufitems =
Buffersi
Highinde

Bufitems;

Rassbits:

NOTE - You cannot use standard- o user defined functions in the constant
axpressions {i.a. ABS, CAP, ...).

a) Integral Numbers

in Modula-2, there are two kinds of integral numbers: CARDINALs and INTEGERS.

CARDINALS range from O to 65535, whereas INTEGERs can have any value between
and including -32768 and 32767,

For thic reason, Integral constants are subdivided into three groups:
~32768 .. -1 INTEGERSs
0 .. 32167 INT -CARDs (compatible with either type)
32768 .. 65535 CARD INALS
Modula-2 additionaliy orovides twe other number bases o express INT-CARD and

CARDINAL constants. These additional bases are hexadecimal and octal. Their use
is indicated by the letters "M resp., 'B' following the constant.

Valid cotal digits are "0%..77% Ootal numbers may range from OB up to 177777B. In
decimal based constants, one can use "08..°9" as digits. As said before, they are in the
range O up to 65535, For hexadecimal numbers, the digits ‘A'..'F' are added to the
decimal ones. Correct numbers are 0 to OFFFFH.

MOTE - No fowercase letters (e.g. fa'..1') may be used in hexadecimal
ants. You have to preced h constant beginning with a character
by o 07 te have the compiler vecognize it as a number and not as

iyt

introduction toe Modula-2
Differences between Modula-2 and Pascal

Page M2-36

another constant's name, Also, the base indicating letters 'B' and 'H'
cannot be replaced by 'b' and 'h' respectively.

Examples:
- Hexadecimal constants:

oH OFFH 200H OFFFCH

- Octal constants:

0B 377B 6008 1777738

NOTE - The octal base was chosen because the use of octal numbers is
widespread on minicomputers as DEC's PDP series. Modula-2 was first
implemented on such a mini by people accustomed to that environment.
The 'B' was chosen as the base identifier because it resembles the digit

'g'.

b) Characters

In addition to Pascal's usual character constants (i.e. 'a', 'K'), Modula-2 allows for
direct control character constant declarations. This is achieved by using the octal
base to specify the character's ordinal value (see Appendix ASCIl Character Set).
The base is indicated by following the constant with the letter 'C'. The constant can
have values from 0C up to 377C. This is decimal O to 255.

NOTE - Character constants can be declared by ordinal value but in the octal

base.
Examples:
CONST

ESC = 33C;
BS = 10C;
BEL = 7C;
capA = 'A';
zed = "z';

Introduction to Modula-2
Differences between Modula-2 and Pascal
Page. M2-37

c) Strings

String constants are similar to Pascal. The only difference is that you cannot include
the delimiter character in a string (i.e. ''""'"). Modula-2 instead provides two different
delimiter characters, ' " ''and " ' ",
Examples:

'"This is a correct string constant'

"Hi there, ain't this fun?"
NOTE - A string's start and end delimiters must be the same character. You

cannot make a string like

'This is NOT a correct string constant".

A string constant may not contain both single and double quotes. You have to split it
in that case.

NOTE - Modufa-2 relaxes Pascal's string constant assignment rules by allowing you
to assign any string constant to a zero based array of character variable if the
constant is equal or less in length. Shorter string constants end in a 0C
character that is appended by the compiier.

NOTE - String constants may not exceed a program source line. Their maximum
length (as accepted by the compiler) is 128 characters.

Example:

VAR longString: ARRAY [0..1000] OF CHAR;

longString := 'This is an allowed string constant assignment.'

'Zero based' means that the index of the string variable has to start with 0. The
Pascal rules apply to all character arrays indexed otherwise.

introduction to Moduia-2
Differences between Modula-2 and Pascal
Page M2-38

Sets differ

d) Sets

from Pascal in several ways:

For efficiency reasons, sets are just 16 bits long; they have the
size of an integer or cardinal variable.

Set elements are restricted to (subranges of) constant
expressions. Variables may be included by standard procedures
(INCL and EXCL).

Set constants are delimited by curly braces ('{' and '}') instead of
Pascal's square brackets.

Set constants may be typed. The type identifier in this case
precedes the set constant. In Pascal, the set type was automatically
determined by its element's type.

There is a standard type called BITSET that is the default set cons-
tant type. It is defined as a set with the elements O up to 15.

An example:

CONST
bits = {0,5,7,9, 11..15}: (* this is a BITSET typed set *)
bitset = BITSET{0..5}; (* type forced to BITSET *)
TYPE

OurType = (firstBit, secondBit, thirdBit, fourthBit);

QurSet = SET OF OurType;

CONST
first = OurSet{firstBit};

NOTE - All type of sets can have elements with ordinal vaiues in the range O
to 15 at most. This means, a SET OF [100..115] is NOT possible.

Introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-39

e) Floating Point Numbers / REALs

Floating point constants in Modula-2 are similar to Pascal floating point constants.

The syntax of a REAL constant as accepted by the compiler is:

RealConstant Sign Number '.' [Number] ['E' Sign Number].

Sign = ["+']"-"].
Number = Digit {Digit}.
Digit = 'o'?,.l'g'.

NOTE - The decimal point ('.") is a required part of a REAL constant. This
ensures that the compiler can detect REAL numbers in the INTEGER or
CARDINAL range as such. Modula-2 does no implicit type conversions
between INTEGER, CARDINAL and REAL.

Examples:
1.0 10.5 0.7689432101 1.05E10 1.1008809E-20

but NOT 1E1 14 1E1.7 .05

REAL constants may be in the range 0.0 up to 1.7014118*1038, for negative as well
as positive numbers. The smallest representable floating point number is 2.94%10-39,
So, the range is 2-128 up to, but not including, 2127, The resolution of the chosen
format is one part out of 224, or about 7.2 decimal digits. Consider that the
difference between two representable numbers near the maximum REAL number is
about maxReal/mantissa-range. The mantissa range is 24 bits or 224 possible values.
This means, that 2(127-24) = 2103 or about 1031 is the difference between two ad-
jacent representable numbers. Adding 1 to a number near MAX(REAL) doesn't make
any sense, though.

WARNING - No REAL constant expressions may be specified. The compiler
does not include the code to evaluate such expressions.

introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-40

3. Type Declaraticons

Type definitions are nearby unchanged when compared to Pascal. There
are new types and a different syntax for variant records and pointer
definitions, however, The set tvpc is more limited than Pascal's sets are.

There are two basically different classes of types: structured types and
unstructured, or scalar types. The Jifference between the two classes is, that
elements of scalar itypes are atomic, i.e. they have no sub-elements, no structure.
For example, you cainnot refer to the 5th bit of the CARDINAL vaiue 13. The
circumstance that the number may consist of several bits is a characteristic of its
internal representation, which remains unknown. Scalar types are CHAR, BOOLEAN,
CARDINAL, INTEGER, enumerations and subranges of all these types. A structured
type's elements aren't atomic, they have components. These are record fields, and
array or set elements.

The following sections will show how to declare scalar and structured types. Pointer
declarations are also covered, although pointers do not fit either of the two type
classes.

a) CARDINALs

Unsigned numbers in the range from 0 to 65535 are the elements of the
CARDINAL standard data type. All INTEGER operations are also available
for cardinals (except for ABS, of course).

You can assign cardinal and integer variables to each other; you cannot mix them in
expressions. This is because the compiler cbviously couldn't decide whether to use
signed (INTEGER) or unsigned (CARDINAL) operations in such a mixed expression,

WARNING - An often occurring CARDINAL ervor is to test IF ¢ »= 0 -~ which
is always TRUE! On the other hand, IF ¢ < 0 is always FALSE.

Introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-41

Example:

PROCEDURE CardinalFun;

VAR
c, d: CARDINAL;
i, j: INTEGER;
BEGIN
c =i (* legal assignments *)
i 1= c * d;
d:=1i+j-c; (* ILLEGAL (mixed) expression *)

END CardinalFun:

b) Characters

The standard type CHAR corresponds to microcomputer Pascal implementations; the
underlying character set is the ASCIl| alphabet, but characters may have values in
the range OC .. 377C. The eighth bit of a character can be used, though.

c) Subranges

Subrange types are declared by enclosing their range into square brackets. In Pascal,
these square brackets are missing.

Example:

CONST
minValue = 103;
maxValue = 10000:

TYPE
demoSubrange = [minValue..maxValuel;

NOTE - The square brackets are an integral part of the subrange declaration;
array index declarations are affected by this fact!

Introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-42

d} Pointers

Pointer declarations don't use the caret ('"') but the reserved words POINTER TO.
You can declare a pointer's base type directly in the pointer declaration, you're no
longer restricted to type identifiers as base types (see the xxPointer example).

Examples:

IntPointer = POINTER TO INTEGER:
ListPointer = POINTER TO ListElement;:
TrickyPointer = POINTER TO POINTER TO CHAR: (* C it? *)
xxPointer = POINTER TO RECORD

c: CARDINAL;

i: INTEGER;

END:

NOTE - As in Pascal, pointer declarations may contain forward references. This
is the only declaration that allows forward references.

e) Arrays

Array declarations are similar to Pascal. The only difference arises when you are
using an explicitly declared subrange type as an array index. Then, the square
brackets have to be omitted. |f you declare the array index as usual, the square
brackets are still necessary. For multidimensional arrays, there are two possible
forms to specify the field indices: Aside from the standard Pascal form, i.e. "[1..2,-
1..5]", you may also write "[1..2], [-1..5]" which has the same effect. This results -
as you certainly guessed - because of the move of brackets to the subrange types.
So, you can declare also arrays having subranges as indices (see example below!).

All one dimensional character arrays with a lower index bound of O are assignment
compatible with string constants, i.e. you can assign a string constant to them,

NOTE - the compiler accepts string constants of 128 characters, at most.
Furthermore, a string constant may not exceed a program source line.

Introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-43

Examples of one-dimensional arrays and string compatibles:

TYPE
Arrayindex = [0..100];
ArrayType = ARRAY Arraylndex OF CARDINAL;
NormalArray = ARRAY [1..100] OF CHAR;
StringCompatible = ARRAY [0..127] OF CHAR;

Examples of multi-dimensional arrays:

TYPE
Rows = [0..23];
Columns = [0..79];
ScreenBuffer = ARRAY Rows, Columns OF CHAR;
ChessBoard = ARRAY [0..7], [0..7] OF Position;
Matrix = ARRAY [0..5, 0..5] OF REAL;

When using an array element in an expression, the type of the expression used to
give the array's index or indices has to be assignment compatible to type specified in
the array's declaration.

f) Records

Records differ from Pascal's records only in the variant record declaration. There are
two differences:

- The CASE declaration follows the Modula-2 CASE statement
convention (case delimiters aren't BEGIN END pairs but vertical
bars ('|")).

- CASEs that have variants of the same length (just overlaid fields)
may be used before the record's end. This enables you to overlay
two mutually exclusive fields (see the example).

Introduction to Modula-2
Differences between Modula-2 and Pascal
Page M2-44

Examples:

TYPE
NodePointer = POINTER TO TreeNode; (* a binary tree *)
TreeNode = RECORD
ident: INTEGER;
less,
greater: NodePointer;
END;

RECORD
i: INTEGER;
CASE BOOLEAN OF
TRUE: k, m: CARDINAL;
| FALSE: s: STRING;
END; (* CASE *)
END;

VariantRecord

RECORD
v: VariableKind;
CASE BOOLEAN OF
TRUE: nextObject: ObjectPointer;
| FALSE: IdentType: StructurePointer;
END; (* CASE *)
size: CARDINAL;
address: CARDINAL;
END;

ClosedVariant

NOTE - 'Fancy' type transfers as in

TYPE Tricky = RECORD
CASE BOOLEAN OF
TRUE: c: CARDINAL;
| FALSE: i: INTEGER;
END; (* CASE *)
END;

aren't required in Modula-2; it provides more elegant and obvious schemes
to break the strict type checking system of the compiler. See in the
section Low Level Machine Access for more details about these
