
DIGITAL
R E S E A R C H °

Concurrent CP/M TM

Operating System

System Guide

COPYRZGHT

Copy~ightOlgO4 by Digital Research Inc. All
rights reserved. No part of this publication may be
r e p r o d u c e d , t r a n s m i t t e d , t r a n s c r i b e d , s t o r e d in a
r e t r i e v a l s y s t e m , o r t r a n s l a t e d i n t o any l a n g u a g e or
c o m p u t e r l a n g u a g e , i n any f e r n or by any means ,
electronic, mechsnlcal, magnetic, opticalr chemical,
manual or otherwise, without the prior written
permission of Digital Research Zno,, POSt Office Box
579, Pacific Grove, California, g3950.

DISCLAIMER

Digital Research Inc. makes no representations or
warranties with r e s p e c t to the contents hereo f and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research Inc. reserves
the right to revise this publication and to make
changes from tlme to time In the oontent hereof
without obligation of Digital Research Inc. to
notify any person of such revision o: ohen~e8.

TRADEMARK8

CP/N, CP/M-86, and Digital Research and Its logo are
registered trademarks of Digital Researoh Inc. ASH-
86, Concurrent OF/K, DDT-86, MP/M-86, UID-86, and
GSX a : e tradeuarke of Digital Research InD. Intel
is a registered trademark of Intel Corporation. IBM
is a r~ietmre~ t r a d e ~ n r k of ~nternatlcnel Business
Hachinee. CompuFro is a registered trademark of
CompuPro, a Godbout Company. MS-DOS is a trademark
of Microsoft Corporation.

The Concurrent CP/H" Operating System System
Guide was prepared using the Digital Research
TEx TM Text Formatter and printed in the United States
of America.

* First Edition: January 1984 *

Foreword

Concurrent CP/M '= can be configured as a single or multiple user,
multitasking, real-time operating system. It is designed for use
with any disk-based microcomputer using an Intele 8086, 8088, or
compatible microprocessor with a real-time clock. Concurrent CP/M
is modular in design, and can be modified to suit the needs of a
particular installation.

Concurrent CP/M also can support many IBMe Personal Computer Disk
Operating System (PC DOS) and MS" -DOS programs. In addition, you
can read and write to PC DOS and MS-DOS disks. In this manual, the
te~m DOS refers to both PC DOS and MS-DOS.

The information in this manual is arranged in the order needed for
use by the system designer. Section 1 provides an overview of the
Concurrent CP/M system. Section 2 describes how to build a
Concurrent CP/M system using the GENCCPM utility. Section 3
contains an overview of the Concurrent CP/M Extended Input~Output
System (XIOS). XIOS Character Devices are covered in Section 4, and
Disk Devices in Section 5. Section 6 describes special character
I/O functions needed to support DOS programs.

A detailed description of the XIOS Timer Interrupt routine is found
in Section 7. Section 8 deals with debugging the XIOS. Section 9
discusses the bootstrap loader program necessary for loading the
operating system from disk. Section i0 treats the utilities that
the OEM must write in order to have a commercially distributable
system. Section ii covers changes to end-user documentation which
the OEM must make if certain modifications to Concurrent CP/M are
performed. Appendix Adiscusses removable media considerations, and
Appendix B covers graphics implementation.

Many sections of this manual refer to the example XIOS. There are
two examples provided. One is a single user system to run on the
IBM Personal Computer. The other is a multi-user system running on
a CompuPro® 86/87 with serial terminals. The single user example
includes source code for windowing support for a video mapped
display. However windowing is not required foe the system. The
source code for both examples appears on the Concurrent CP/M
distribution diskl we strongly suggest assembling the source files
following the instructions in Section 2, and referring often to the
assembly listing while reading this manual. Example listings of the
Concurrent CP/M Loader BIOS and Boot Sector can also be found on the
release disk.

iii

DigitalResearch e supports the user interface and8oftware interface
to Concurrent CP/M, as described in the Concurrent CP~M Operatinq
System User's Guide and the Concurrent CP~ O~ratln~ System
Programmer'8 Reference Guide, respectively. Digital Research does
not support any additions or modifications made to Concurrent CP/M
by the OEM or distributor. The GEM or Concurrent CP/M distributor
must also support the hardware interface (XIOS) for a particular
hardware environment°

The C o n c u r r e n t CP/M Sys t em Guide i s i n t e n d e d f o r u se by s y s t e m
designers who want to modify either the user or hardware interface
to Concurrent CP/M. It aesumee you have already implemented a CP/M-
86 • 1.0 Basic Input/Output System (BIOS), preferably on the target
Concurrent CP/M machine. It also assumes you are familiar wlt%
these four manuals, which document and support Concurrent CP/Mt

The Concurrent CP/MOperating S~stem User's Guide documents t h e
user's interface to Concurrent CP/M, explaining the various
features used to execute applications programs and Digital
Research utility programs.

The Concurrent CP/M Operating System Programmer's Reference
Guide documents the applications programmer's interface to
Concurrent CP/M, explaining the internal file structure and
system entry points--information essent£11 to create
applications programs that run in the Concurrent CP/M
envlron•ent0

The Concurrent CP/M OPeratinq S~stem Proqrammer's Dtillties
Guide documents the Digital Research utillty programs
programmers use to write, debug, and verify applications
programs written for the Concurrent CP/M environment.

• The Concurrent CP/M Operating System System Guide documents the
internal, hardware-dependent structures of Concurrent CP/M.

Standard terminology is used throughout these manuals to refer to
Concurrent CP/R features. ~or example, the names of all XIOS
function calls and their associated code routines begin with 10 .
Concurrent CP/M system functions available through the logioalTy
invariant software interface are called system calls. The names of
all data structures internal to the operating system or XIOS are
capitalized: for example, XIOS Header and Disk Parameter Block.
The Concurrent CP/M system data segment is referred to as the SYSDAT
area or simply SYSDAT. The fixed structure at the beginning of the
SYSDAT area, documented in Section l.lO of this manual, is called
the SYSDAT DATA.

Iv

Table of Contents

I Syetea Overview

i.i Concurrent CP/M Organization 1-3

I. 2 Memory ~.ayout 1-4

1.3 Supervisor . 1-4

I. 4 Real-tlme Monitor 1-6

1.5 Memory Management Module 1-8

1.6 Character I/O Manager i-ii

1.7 Basic Disk Operating System 1-11

1.8 Extended I/O System 1-13

1.9 Reentrancy in the XIOS 1-13

i.i0 SYSDAT Segment 1-14

I.ii Resident System Processes 1-20

2 Buildlng the XIOS

2.1 GENCCPM Operation 2-1

2.2 GENCCPM Main Menu 2-2

2.3 System Parameters Menu 2-5

2.4 Memory Allocation Menu 2-10

2.5 GENCCPM RSP List Menu 2-12

2.6 GENCCPM OSLABEL Menu 2-13

2.7 GENCCPM Disk Buffering Menu 2-13

2.8 GENCCPM GENSYS Option 2-15

2.9 GENCCPM Input Files 2-16

3 IXOS Overview

3.1 XIOS Header and Parameter Table 3-1

3.2 INIT Entry Point 3-8

v

Table of Contents
(continued)

3.3 XIOS ENTRY . 3-9

3.4 Converting the CP/M-S6 BIOS 3-13

3.5 Polled Devices 3-!5

3,6 Interrupt Devices 3-15

3.7 8087 Exception Handler 3-17

3,8 XIOS System Calls 3-20

Chattier Dev£cea

4.1 Console Control Block 4-2

4.2 Console I/O Functions 4-7

4.3 List Device Functions 4-13

4.4 Auxiliary Device Functions 4-15

4.5 XO_POLL Function 4-17

Disk Devices

5.1 Disk I/O Functions 5-1

5.2 lOPE Data Structure 5-9

5.3 Multisector Operations on Skewed Disks 5-16

5.4 Disk Parameter Header 5-21

5.5 Disk Parameter Block 5-27

5.5.1 Disk Parameter Block Worksheet 5-35
5.5.2 Disk Parameter List Worksheet 5-40

5.6 Buffer Control Block Data Area 5-41

5.7 Memory Disk Application 5-47

5.8 Multiple Media Support 5-50

vi

Table of Contents
(continued)

6 PC-4K)DE Character l/O

6.1 Screen I/O Functions 6-i

6.2 Keyboard Functions 6-9

6.3 Equipment Check 6-11

6.4 PC-MODE IO_CONIN 6-11

XI~ TICK Interrupt Routine 7-1

Debugging the XI~

8.1 Running Under CP/M-86

Bootstrap 9

8-1

9.1 Components of Track 0 on the IBM PC 9-1

9.2 The Bootstrap Process 9-2

9.3 The Loader BDOS and Loader BIOS Function Sets . . . 9-4

9.4 Track 0 Construction 9-5

9.5 Other Bootstrap Methods 9-7

9.6 Organization of CCPM.SYS 9-8

1 0 O N (U t i l i t i e s

I0.i Bypassing the BDOS 10-1

10.2 Directory Initialization in the FORMAT Utility . . 10-11

11 E n d - u s e r i k ~ u a e a t a t i o n l l - I

v i i

Appendixes

A R m m o v a b l e l 4 m d i a . A - 1

B G r a p h i c s I ~ l ~ t a t i ~ B - 1

Tables, Figures, and Ustings

Tables

I-1. Supervisor System Calls 1-4
1-2. Real-time Monitor System Calls I-7
1-3. Definitions for Figure 1-3 i-I0
1-4. Memory Management System Calls 1-10
1-5. Character I/O System Calls 1-11
1-6. BDOS System Calls 1-12
1-7. SYSDAT DATA Data Fields 1-15

2-1. OENCCPM Main Mznu Options 2-4
2-2. System Parameters Menu Options 2-6

3-1. XZOS Haadmr Data Fields 3-2
3-2. XIOS RmM~llter Ulage 3-i0
3-3. XIOS Functions 3-11

4-1. Console Control Block Data Fields 4-4
4-2. Llst Control Block Data Fields 4-14

5--1.
5-2.
5-3.
5-4.
5-5.
5-5.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.

Extmnd~ Error Codes 5-4
IOPB Data Fields 5-11
DOS IOPB Data Fields 5-15
Disk Parameter Header Data Fields 5-21
Disk Parameter Block Data Fields 5-28
Extended Disk Parameter Block Data Fields . . 5-32
BSH and BLM Values 5-35
EXM Values 5-36
Directory Entries per Block Size 5-37
ALe, ALI Values 5-38
PSH and PRM Values 5-39
Buffer Control Block Header Data Fields 5-42
DZRBCB Data Fields 5-43
DATBCB Data Fields 5-45

viii

Tables, Figures, and Listings
(continued)

6-1. Alphanumeric Modes 6-3
6-2. Graphics Modes 6-3
6-3. Keyboard Shift Status 6-10
6-4. DOS Equipment Status Bit Map 6-11
6-5. Keyboard Scan Codes 6-12
6-6. Extended Keyboard Codes 6-13

i0-i. Directory Label Data Fields 10-14

Figures

1-1.
1-2.
i-3.
1-4.
1-5.

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.

3-1.

4-1.
4-2.
4-3.
4-4.
4-5.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.

Concurrent CP/M Interfacing 1-2
Memory Layout and File Structure 1-5
Finding a Process's Memory 1-9
SYSDAT . 1-14
SYSDAT DATA 1-15

GENCCPM Main Menu 2-2
GENCCPM Help Function Screen 1 2-3
GENCCPM Help Function Screen 2 2-4
GENCCPM System Parameters Menu 2-6
GENCCPM Memory Allocation Sample Session 2-10
GENCCPM RSP List Menu Sample Session 2-12
GENCCPM Operating System Label Menu 2-1~
GENCCPM Disk Buffe~ing Sample Session 2-14
GENCCPM System Generation Messages 2-16
Typical GEHCCPM Command File 2-17

XIOS Header 3-2

The CCB Table 4-2
CCB's For Two Physical Consoles 4-3
Console Control Block Format 4-4
The LCB Table 4-13
List Control Block (LCB) 4-14

Input~Output Parameter Block (IOPB) 5-10
DOS Input/Output Parameter Block (IOPB) 5-15
DMA Address Table for Multisector Operations . . 5-16
Disk Parameter Header (DPH) 5-21
DPH Table 5-26
Disk Parameter Block Format 5-28
Extended Disk Parameter Block Format 5-31
Buffer Control Block Header 5-41
Directory Buffer Control Block (DIRBCB) 5-42
Data Buffer Control Block (DATBCB) 5-45

ix

Tables, Rsures and Ustlngs
(continued)

8-1. Debugging Menory Layout 8-2
8-2. Debugging CCP/M Under DDT-86 and CP/M-86 8-3
8-3. Debugging the XIO8 Under SID-86 and CP/M-85 . . 8-4

9 - 1 . T r a q k 0 on t h e I B) [PC 9 - 1
9 - 2 . L o a d e r O r g a n i z a t i o n 9 - 2
9-3. Disk Parameter Field Initialization 9-5
9 - 4 . GrOup Deeurlptoca - CCYM.SYS H e a d e r Re~ocd . . . 9 - 8
9-5. CCPM System Inage and the CCPM.aY8 File 9-9

1 0 - 1 .
1 0 - 2 .
1 0 - 3 .
10 -4 .

Limti~e

3-1.
3-2.
3-3,

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5 - 1 0 .
5 - 1 1 .

1 0 - 1 .

Conourcent CP/)I Disk Layout 10-12
Direotor¥ Initialization Without Tiae Stamps . . 10-13
Directory Label Initialization 10-13
Directory Inltialisatlon With Time Stamps . . . 10-15

XIOE Header Definition 3-7
XZOB Function Table 3-12
8087 E x o e p t / o n H a n d l e r 3 - 1 9

M u l t i a e o t o r O p e r m t i o n a 5 - 5
IOPB D e f i n i t i o n 5 - 1 3
M u l t i e e o t o r Unmkew ing 5 - 1 8
DPH D e f i n i t i o n 5 - 2 5
8ELDaK X IOS F u n o t i o n 5 - 2 6
DPB D e f i n i t i o n 5 - 3 0
3 x t e n d e d DPB D e f i n i t i o n 5 - 3 4
BCB H e a d e r D e f i n i t i o n 5 - 4 2
DIP.BC3 D e f i n i t i o n 5 - 4 4
DATBCB D e f i n i t i o n 5 - 4 6
Example H DIBK Inplementatlon 5-48

Disk Utility Programming Example 10-3

Section 1
System Overview

Concurrent CP/M is a multitasking, real-time operating system. It
can be configured for one or more user terminals. Each user
terminal can run multiple tasks simultaneously on one or more
virtual consoles. Concurrent CP/M supports extended features, such
as intercommunication and synchronization of independently running
processes. It is designed for implementation in a large variety of
hardware environments and as such, you can easily customize it to
fit a particular hardware environment and/or user's needs.

Concurrent CP/M also supports DOS (PC DOS and MS-DOS) programs and
media. The XIOS support for DOS media is described in Section 5 of
this manual. DOS character I/O is described in Section 6.

Concurrent CP/M consists of three levels of interface: the user
interface, the logically invariant software interface, and the
hardware interface. The user interface, which Digital Research
distributes, is the Resident System Process (RSP) called the
Terminal Message Process (TMP). It accepts commands from the user
and either performs those commands that are built into the TMP, or
passes the command to the operating system via the Command Line
Interpreter (P_CLI). The Command Line Interpreter in the operating
system kernel either invokes an RSP or loads a disk file in order to
perform the command.

The logically invariant interface to the operating system consists
of the system calls as described in the Concurrent CP/M Operating
System Programmer's Reference Guide. The loglcally invariant
interface also connects transient and resident processes with the
hardware interface.

The physical interface, or XIOS (extended I/O system), communicates
directly with the particular hardware environment. It is composed
of a set of functions that are called by processes needing physical
I/O. Sections 3 through 6 describe these functions. Figure i-i
shows the relationships among the three interfaces.

Digital Research distributes Concurrent CP/M with machine-readable
source code for both the user and example hardware interfaces. You
can write a custom user and/or hardware interface, and incorporate
them by using the system generation utility, GENCCPM. There are two
example XIOSs supplied with the system. One is written for the IBM
Personal Computer, as a single user system with multiple virtual
consoles. The other XIOS is written for the CompuPro 86/87 with
multiple serial terminals. The example XIOSs are designed to be
examples and not commercially distributable systems. Wherever a
choice between clarity and efficiency is necessary, the examples are
written for clarity.

i-i

Concurrent CP/M System Guide 1 Sys tem O v e r v i e w

Th i s s e c t i o n d e s c r i b e s t h e modules c o m p r i s i n g a t y p i c a l C o n c u r r e n t
CP/M operating system. It is important that you understand this
material beEore you try to customize the operating system for a
partlculer appllcatlon.

User

User (TMp)Interface I

Invariant I Interface

(SUP RTM ME~4 CIO BDOS)

Hardware I Interface
(XIOS)

Hardware Environment

F i g u r e 1 - 1 . C o n c u r r e n t CP/M I n t e r f a c i n g

1-2

Concurrent CP/M System Guide i.i Organization

1 . 1 Concur ren t C P ~ O r g a n i z a t i a n

Concurrent CP/M is composed of six basic code modules. The Real-
time Monitor (RTM) handles process-related functions, including
dispatching, creation, and termination, as well as the Input/Output
system state logic. The Memory module (MEM) manages memory and
handles the Memory Allocate (M_ALLOC) and Memory Free (M FREE)
system calls. The Character I/0 module (CIO) handles all console
and list device functions, and the Basic Disk Operating System
(BDOS) manages the file system. These four modules communicate with
the Supervisor (SUP) and the Extended Input~Output System (XIOS).

The SUP module manages the interaction between transient processes,
such as user programs, and the system modules. All function calls
go through a common table-driven interface in SUP. The SUP module
also contains the Program Load (P_LOAD) and Command Line Interpreter
(P CLI) system calls.

The XIOS module handles the physical interface to a particular
hardware environment. Any of the Concurrent CP/M logical code
modules can call the XIOS to perform specific hardware-dependent
functions. The names used in this manual for the XIOS functions
always begin with 10 in order to easily distinguish them from
Concurrent CP/M operat-ing system calls.

All operating system code modules, including the SUP and XIOS, share
a data segment called the System Data Area (SYSDAT). The beginning
of SYSDAT is the SYSDAT DATA, a well-deflned structure containing
public data used by all system code modules. Following this fixed
portion are local data areas belonging to specific code modules.
The XIOS area is the last of these code module areas. Following the
XIOS Area are Table Areas, used for the Process Descriptors, Oueue
Descriptors, System Flag Tables, and other operating system tables.
These tables vary in size depending on options chosen during system
generation. See Section 2, "System Generation."

The Resident System Processes (RSPs) occupy the area in memory
immediately following the SYSDAT module. The RSPs you select at
system generation time become an integral part of the Concurrent
CP/M operating system. For more information on RSPs, see Section
i.ii of this manual, and the Concurrent CP/M Operatin~ System
Pro~ranlmer ' s Reference Gulde.

Concurrent CP/M loads all transient programs into the Transient
Program Area (TPA). The TPA for a given implementation of
Concurrent CP/M is determined at system generation time.

1-3

Concur ren t CP/M System Guide 1.2 Meaory Layout

1.2 ~zy Layout

The Concurrent CP/~(operating system area san exist anywhere in
memory except over the interrupt vector area. You define the exact
lo~atlon of Concurrent CP/M during system generation. The GENCCPM
program determines the memory locations of the system modules that
make u p Concurrent CP/M baaed upon system generation parameters and
the size of the modules.

The XIOS must reelde within BYSDAT, You must write the XIOS as a n
8080 model program, with both the code and data segment registers
set to the beginning of SYSDAT.

Figure 1-2 shows the relationship of the Concurrent CP/M system
image to the CCPM.SYS disk file structure.

1.3 SuperviMor

The Concurrent CP/M Supervisor (SUP) manages the interface between
system and transient processes and the invariant operating system.
All system calla go through a co~mon table-drlven interface in SUP.

The SUP module also contains system calla that invoke other system
calls, llke P LOAD (Program Load) and P CLI (Command Line
Interpreter).

Table i-i. Oupervlao= System Calls

System Cal l l Number I Hex

F PARSE 152 98
P--CHAIN 47 2F
P_CLI 150 96
P LOAD 59 3B
P--RPL 151 97
S--BDOSV~R 12 0C
S BIOS 50 32
B--OBVER 163 0A3
S--SYSDAT 154 9A
S SERIAL 107 6B
T--SEC0NDS 155 9B

1-4

Concurrent CP/MSyatem Guide 1.3 Supervisor

(top of memory)

TPA

Disk Buffers

RSPs

Table Area

XIOS

SYSDAT DATA

BDOSCode

CIO Code

MEM Code

RTM Code

SUP Code

TPA

End of file--~

4 End of
O.S. Area

~--End of O.S,

within
64k

~XIOS
Code & Data

Segment

beginning
of O.S. area

0:0400H

0:0000H

CCPM.SYS
Extra Group
(Used to hold
GENCCPM options)

CCPM.SYS
Data Group

CCPM.SYS
Code Group

CCPM.SYS
CMD Format
File Header

(Start of File)

Figu re 1 -2 . Memory Layout and File Structure

1-5

Concurrent CP/)(System Guide 1.4 Real-tlme M o n i t o r

i . 4 R m a l - t i m e ~ n l t o r

The Real-tlme Monitor (RTM) is the multitasking kernel of Concurrent
CP/M. It handles process dlspatohlng, queue and flag management,
device polling, and system timing tasks. It also manages the
logical interrupt system of Concurrent CP/M. The prlmsry function
of the RTM is transferring the CPU raeourcs from one process to
another, a task accomplished by the RTM dispatcher. At every
dispatch operation, the dispatcher stops the currently running
p r o c e s s from execution and stores its state in the Process
Daacrlptor (PD) and User Data Area (UDA) associated with that
process. The dispatcher then selects the hlgheat-prlority process
in the ready state and restores it to execution, using the data in
its PD and UDA. A process is in the ready state if it i s waiting
for the CPU resource only. The new process continues to execute
until it needs an unavailable resource, a resource needed by another
process becomes available, or an external event, such as an
interrupt, occurs. At this time the RTNperforme another dispatch
operation, allowing another p~ocess to run.

The Concurrent CP/MRTM dispatcher else performs device polling. A
process waits for a polled device through the RTM DEV_POLL system
call.

When s process needs to wait for an interrupt, it issues a
DEVWAZTFLAG system cell on a loglosl interrupt device. When the
app~oprlata interrupt actually occurs, the XIOS calls the
DEV SETFLAG system call, whloh wakes up the waiting process. The
interrupt routine then performs a Far Jump to the RTM dlspatoher,
which rasohedulea the In~err~pta~ process, as well as all othe¢
ready processes that are not yet on the Ready List. At thls point,
the dlapatcher places the process with the highest priority into
execution. Processes that are handling interrupts should ~un at s
better priority than nonlnterrupt-dapsndent processes (the lower the
priority number, the better the priority) in order to respond
quickly to incoming interrupts.

The aynteu clock generates interrupts, clock ticks, typlcally 60
times per second. This allows Concurrent CP/M to effect process
time slicing. Since the ope~atlng system waits for the tick flag,
the XIO8 TICK Interrupt routine must execute a Concurrent CP/M
DEV 53TFLAG system call at each tick (see Section 7, "XIOS TICK
Int~ruptRoutlne"), then perform s Far Jump to the SUP antrypolnt.
At thl8 point, processes wlth equal priority are scheduled for the
CPUresource in round-robln fashion unless a better-priorlty process
is on the Ready List. If no process 18 ready to use the CPU,
Concurrent CP/Mremslns in the dispatcher until an interrupt occurs,
or a polling process i8 ready to run.

1-6

Concurrent CP/M System Guide 1.4 Real-time Monitor

The RTM also handles queue management. System queues are composed
of two parts: the Queue Descriptor, which contains the queue name
and other parameters, and the Queue Buffer, which can contain a
specified number of fixed-length messages. Processes read these
messages from the queue on a first-in, first-out basis. A process
can write to or read from a queue either conditionally or
unconditionally. If a process attempts a conditional read from an
empty queue, or a condltional write to a full one, the RTM returns
an error code to the calling process. However, an unconditional
read or write attempt in these situations causes the suspension of
the process until the ooeration can be accomplished. The kernel
uses this feature to implement mutual exclusion of processes from
serially reusable system resources, such as the disk hardware.

Other functions of the Real-time Monitor are covered in the
Concurrent CP/M Operating System Programmer's Reference Guide under
their individual descriptions.

Table 1-2. Real-time Monitor System Calls

System Call 1 Number 1 Hex

DEV_SETFLAG 133 85
DEV_WAITFLAG 132 84
DEV POLL 131 83
P ABORT 157 9D
P--CREATE 144 90
P--DELAY 141 8D
P--DI S PATCH 142 8E
P--PDADR 156 9C
P--PRIORITY 145 91
P--TERM 143 8F
P"TERMCPM 0 00
Q~CREAT 138 8A
0_CWRITE 140 8C
Q_.DELETE 136 88
Q_MAKE 134 86
Q_OPEN 135 87
Q_READ 137 89
Q_WRITE 139 8B

1-7

C o n c u r r e n t C P / q 4 S y s t e m Guide 1.5 Memory Management Module

1 .5 I~mor lv ManagementS, Nodule

The Memory Management module (M~l) h a n d l e s e l l memory f u n c t i o n s .
C o n c u r r e n t CP/J4 s u p p o r t s an e x t e n d e d mode l o f memory managemen t .
F u t u r e r e l e a s e s o f C o n c u r r e n t C P / M m i g h t s u p p o r t d i f f e r e n t v e r s i o n s
o f t h e Memory module d e p e n d i n g on c l a s s e s o f memory management
hardware that become available.

The HEM module describes memory partitions internally by Memory
Descriptors (MDa). Concurrent CF/M initially places all available
partitions on the Memory Free List (MFL). 0nee MEM allocates a
partition (or se~ of contiguous partitions), it takes that partition
off the MFL and places it on the Memory A11ocaticn List (MAL). The
Memory Allocation List contains descriptions of contlgucus areas of
mercury known ae Memory Allo~atlon Units (MAUs). MAUo always contain
one or more partitions. The KEMmodule manages the space within an
KAU in the following way: when a process r e q u e s t s extra memory, MEM
first determines if the MAU has enough unused space. ~f it does,
the extra memory recfumated comes from the procees'e own partition
first.

A process can only all,cats memory from a MAU in which it already
owns ~emory, or from a new MAU crested from the MFL. if one process
shares memory with another, either can allocate memory from the MAU
that contains the shared memory segment. The MEM module keeps a
count of how many processes "own" a particular memory segment to
ensure that it becomes available within the HAU only when nc
proceeHs own it. When all of the memory within an MAU is free, the
KEM module frees the MAU and returns its memory partltlone to the
MFL.

If the system for which Concurrent CP/M i s being implemented
contains memory management hardware, the XIOS can protect a
proceee's memory when it is not in context. When the process Is
entering the operating system, all memory in the system should be
made Read-Wrlte. When a process is exiting the operating system,
the p r o c e n e ' s msnory should be made Reed-Wrlte, the operating system
memory (from CCPHSEG to ENDSEG) made Read-Only, and all other memory
made nonexistent. Memory pzotection can be implemented within the
XZOS by a rcutlne that intercepts the ZNT 224 entry point fcr
Concurrent CP/M system calls, and interrupt routines that handle
attempted memory protection violations.

Figure 1-3 shows how to find a process's memory.

1-8

Concurrent CP/M System Gulde 1.5 Memory Management Module

SYSDAT • 68H

' I It~R o

PD

MSD

MAU

I

I

00H ~ 02H 0{~H

Next MSD
(0 if none)

00H I 02H
I t

I l START
I I

02H lbH 18H 30H

I l l l ~,~-,) o' l l ~
I

08H 0AH
I t

)o 1 , I

(All MSD's polntlng to a common
MAU are grouped together)

U4H ObH OAH.

I LEN~TH

Figure I-3. Finding a Process's Melory

1-9

Concur ren t CP/M System Guide 1.5 MeMory Management Module

Table 1-3.

Data Field I

PD

MEM

MSD

MAU

D e f i n i t i o n s for F i g u r e 1-3.

E~lanatlon

Ready List Roctl points to currently
running process.

Process Descrlptorl describes s process.

MEM field of Process Descrlptcr.

Memory Segment Descrlptor~ describes a
single memory allocation. A process may
have many of these in s linked list. The
MSD llst pointed to by the MEM field
describes all the successful memory
allocations made by the pzocess. Also,
many MBDI lay point to the same MAr. All
MBDspolntlng tc the same MAU are grouped
together.

Memory Allocation Unltl describes a
ccntiguous area cf allocated memory. A
MAU is built from one or more contiguous
memory partitions. The START and LENGTH
fields are the starting paragraph and
number of paragraphs, respectively.

Table 1-4. l(emozy Management System Calls

System Cel l [.umber 1 He~

M ALLOC 128, 129 80, 81
M--FREE 130 82
M~ABS 54 3E
MC ALLFREE 58 3A
MC--ALLOC 55 37
MC~ALLOCABB 56 38
MCFREE 57 39
MC_MAX 53 35

lb~.,es T h e N CABS, MCALLOC, MCALLOCABS, NC_FREE, MC ALLFREE, and
NC MAX system c a l l s i n t e r n a l l y execu te the M ALLOCand M FREE system
caTl8. They are supported for compatibility with the-CP/M-86 and
MP/M-86 TM operating systems.

i-i0

Concurrent CP/M System Guide 1.6 Character I/O Manager

1.6 Character I/O Manager

The Character Input~Output (CIO) module of Concurrent CP/M handles
all console and list device I/O, and interfaces to the XIOS, the PIN
(Physical Input Process) and the VOUT (Virtual OUTput process).
There is one PIN for each user terminal, and one VOUT for each
virtual console in the system. An overview of the CIO is presented
in the Concurrent CP/M Operatin~ System Programmer's Reference
Guid____ee, and XIOS Character Devices are described in Section 4 of this
manual. For details of the Console Control Block (CCB) and List
Control Block (LCB) data structures, see Sections 4.1 and 4.3
respectively.

Table 1-5. Character I/O System Calls

System Call I Number I Hex

C_ASSIGN 149 95
C ATTACH 146 92
C--CAT~ACH 162 0A2
C DELIMIT Ii0 6E
C_DETACH 147 93
C GET 153 99
C MODE 109 6D
C--RAWI0 6 06
C--READ 1 01
C--READSTR i0 0A
C--SET 148 94
C--STAT Ii 0B
C--WRITE 2 02
C WRITEBLK iii 6F
C~WRITESTR 9 09
L ATTACH 158 9E
L CATTACH 161 0A1
L--DETACH 159 9F
L GET 164 0A4
L SET 160 0A0
L--WRITE 5 05
L--WRITEBLK 112 70

1.7 Basic Disk Operating System

The Basic Disk Operating System (BDOS) handles all file system
functions. It is described in detail in the Concurrent CP/M
Operating System Programmer's Reference Guide. Table 1-6 lists the
Concurrent CP/M BDOS system calls.

i-II

Concurrent CP/M SFstem Guide 1.7 Basic Disk Operating System

Table I-6. BDO8 Syatll Calll

System Call J Number 1 Hex

DRV ACCESS 38 26
DRV--ALLOCVEC 27 IB
DRV-DPB 31 IF
DRY--FLUSH 4 B 30
DRV G~T 25 19
DRV-GETLABEL 101 65
DRV--LOG:[NVEC 24 18
DRV--RESET 37 25
DRV--ROVEC 29 ID
DRV BET 14 0B
DRV--B]!ITLABEL i00 64
DRV_--B~F2RO 28 IE
DRV GPACE 46 2B
F ~ I B 30 iz
F--CLOSE 16 i0
F--DELETE 19 13
F-DNAEEG 51 33
F--DMAGET 52 34
F DMAOFF 26 1A
F--]~RRMODE 45 2D
~"~cK 42 2x
F MAKE 22 16
F--MULTIBEC 44 2C
Y_--OPEN 15 OF
F PASSWD i06 6A
7 " - l A D 20 14
F_--READRAHD 33 21
F RANDREC 36 24
F--RENAME 23 17
F--EFZRST 17 11
F--GIZE 35 23
F--SHEXT 18 12
F--TIMEDATE i02 6 6
F--TRUNCATE 99 63
F-UNLOCK 43 2B
F-UEBRNUM 32 20
F-WRITE 21 15
F--WRITERAND 34 22
F--WRITEXFCB 103 67
F--WRITEZF 40 28
~'-_Gm' 105 69
T SET 104 68

1-12

Concurrent CP/M System Guide 1.8 Extended I/O System

1.8 Extended I/O System

The Extended Input~Output System (XIOS) handles the physical
interface to Concurrent CP/M. It is similar to the CP/M-86 BIOS
module, but it is extended in several ways. By modifying the XIOS,
you can run Concurrent CP/M in a large variety of different hardware
environments. The XIOS recognizes two basic types of I/O devices:
character devices and disk drives. Character devices are devices
that handle one character at a time, while disk devices handle
random blocked T/O using data blocks sized from one physical disk
sector to the number of physical sectors in 16K bytes. Use of
devices that vary from these two models must be implemented within
the XIOS. In this way, they appear to be standard Concurrent CP/M
I/O devices to other operating system modules through the XIOS
interface. Sections 4 through 6 contain detailed descriptions of
the XIOS functions, and the source code for two sample
implementations can he found in machlne-readable format on the
Concurrent CP/M OEM release disk.

1.9 Reentrancy in the XIOS

Concurrent CP/M allows multiple processes to use certain XIOS
functions simultaneously. The system guarantees that only one
process uses a particular phymical device at any given time.
However, some XIOS functions handle more than one physical device,
and thus their interfaces must be reentrant. An example of this is
the IO CONOUT Function. The calling process passes the virtual
console number to this function. There can be several processes
using the function, each writing a character to a different virtual
console or character device. However, only one process is actually
outputting a character to a given device at any time.

IO STATLINE can be called more than once. The CLOCK process calls
the IO STATLINE function once per second, and the PIN process will
also call it on screen switches, CTRL-S, CTRL-P, and CTRL-O.

Since the XIOS file functions, IO_SELDSK, IO READ, IO WRITE, and
IO_FLUSH are protected by the ~Xdisk mutual ~clusionqueue, only
one process may access them at a time. None of these XIOS
functions, therefore, need to be reentrant.

1-13

Concurrent CP/M System Guide 1.10 SYSDAT Segment

i.i0 SYSDAT B~ment

The System Data Area (SYSDAT) is the data aagmsnt for 811 modules of
Concurrent CP/M. The SYSDAT segment is composed of three main
areas, as shown in Figure 1-4. The first part is the fixed-format
portion, containing global data used by all modules. This is the
SYSDAT DATA. It =ontalns system variables, including values set by
GENCCPM and pointers to the various system tablas. The internal
Data portion contains field0 of data belonging to individual
operating system modules. The,XIOS begins at the end of this seoond
area of SYSDAT. The third portion of SYSDAT is the System Table
Area, which is generated and initialized by the GENCCPM system
generation utility, t !

Figure 1-4 shows the relati~nshlps among the ~arlous parts of
SYSDAT.

C00H:

0BOHs

000Hz

Figure 1-4.

Table Area

XIOS

Internal Data

(SYSDAT DATA)

STSDAT

Figure I-5 gives the format of the SYSDAT DATA and describes its
data fields.

~-14

Concurrent CP/M System Guide i.i0 SYSDAT Segment

00S

08It

10B

18H

20H

28H

30H

38H

40H

4 8 H

50H

58H

60R

68H

70H

78H

80H

8 8 H

90H

98E

A0H

SUP ENTRY
I I

I I

I I I

I I I

I t I
XIOS ENTRY

I I I

I I I
DISPATCHER

I
CCPMSEG

NLCB NCCB

TEMP TICKS
DISK /SEC

MDUL
I

I
RLR
i

RESERVED
I

VERSION

TOD TOD
HR MIN

OPENFILE

l

I

I
OFF 8087

I
RESERVED

I t
RESERVED

I
RESERVED

I
RESERVED

RESERVED

I
RSPSEG

[

N SYS
FLAGS DISK

I

I
ENDSEG

I
MMP

I

RESERVED
I i I

I I I

I I I

I I I
XIOS INIT

I i I

i l
PDISP

RESER NVCNS
-VED

RESER DAY
-VED FILE

LUL CCB

l I
MFL PUL

l I
~AU

I
DLR
I

THRDRT
I

VERNUM
I

TOD NCON
_SEC DEV

LOCK-- OPEN_
MAX MAX

I
RESERVED

I i I t
RESERVED

I I
SEG 8087 SYS 87 OF

I
DRL

I
QLR

I
CCPMVERNUN

NLST NCI0
DEV DEV

OWNER 8087

FLAGS

i
QUL
Z

[
PLR
I

MAL
I

TOD DAY
7

LCB

I
RESERVED

I IxpoNs
SYS 87 SG

Figure I-5o STSDAT DATA

1-15

C o n c u r r e n t CP/](S y e ~ Guide i.i0 SYBDAT Se~paenb

Table 1-7.

D a t a F i e l d J

SUP ENTRY

XIOB ENTRY

XIOS INIT

DISPATCHER

PDISP

BI~D&TDATADat~aFIoldm

E x p l a n a t i o n

D o u b l e - w o r d a d d r e s s o f t h e S u p e r v i s o r
e n t r y p o i n t f o r i n t e r m o d u l a c o u u n i c a t i o n .
All internal system calls go through this
entry point.

D o u b l e - w o r d a d d r e s s o f t h e E x t e n d e d X/O
S y s t e m entry point for intermodula
colaunlcatlon. All XZOB function calls go
through thla entry point.

Double-word a d d r e s s of the Extended I/0
Byatem Initialization entry point. System
h a r d w a r e initialization t a k e n place by a
call through thle entry Point.

Double-word address of the Dispatcher
entry point that handles interrupt
returns. Executing a JMPF instructi~ to
t h i s a d d r e s s i s e q u i v a l e n t t o e x e c u t i n g an
IRET (I n t e r r u p t R e t u r n) i n s t r u c t i o n . The
Dispatcher routine causes a dispatch to
occur and then executes an Interrupt
R e t u r n . A l l r e g i s t e r s a r e p r e s e r v e d and
one level of s t a c k is u s e d . The add~eme
i n t h i s l o c a t i o n c a n be u s e d by XlOS
i n ~ e r c u p t h a n d l e r s fo~ ~ e r n i n a t l Q n i n s t e a d
of executing an IRET Inetructlon. The
TICK interrupt handler (I TICK in the
example XIOS'e) ends wlt~" a Jump Far
(JMPF) to the address in thls location.
Usually, interrupt handlers that sake
D3~ SETtLAG calls end with a Jump fat to
the- a d d E a s e ntOCOd in t h e DISPATCHER
field. Refer to the example XZOB
interrupt routines and Sections 3.5 and
3.6 for more detailed information.

D o u b l e - w o r d a d d r e s s of the Diapatche~
entry Point that causes a dispatch to
occur with all regletere preserved. Once
the dispatch In done, a RETF instruction
is executed. ~xecutlng a JMPF PDISP is
equivalent to executing a RETF
instruction. This location should be used
as an exit point whenever the XIOS
r e l e a s e s a resource that might be wanted
by a waiting p ~ o c e z e .

1-16

Concurrent CP/M System Guide i.i0 SYSDAT Segment

Data Field J

CCPMSEG

RSPSEG

ENDSEG

NVCNS

NLCB

NCCB

NFLAGS

SYSDISK

MMP

DAY FILE

Table 1-7. (continued)

Explanation

Starting paragraph of the operating system
area. This is also the Code Segment of
the Supervisor Module.

Paragraph Address of the first RSP in a
linked llst of RSP Data Segments. The
first word of the data segment points to
the next RSP in the list. Once the system
has been initialized, this field is zero.
See the Concurrent CP/M Operating System
Programmer's Reference Guide section on
debugging RSPs for more information.

First paragraph beyond the end of the
operating system area, including any
buffers consisting of unlnltlallzed RAM
allocated to the operating system by
GENCCPM. These include the Directory
Hashing, Disk Data, and XIOS ALLOC
buffers. These buffer areas, however, are
not part of the CCPM.SYS file.

Number of virtual consoles, copied from
the XIOS Header by GENCCPM.

Number of List Control Blocks, copied from
the XIOS Header by GENCCPM.

Number of Character Control Blocks, copied
from the XlOS Header by GENCCPM.

Number of system flags as specified by
GENCCPM.

Default system disk. The CLI (Command
Line Interpreter) looks on this disk if it
cannot open the command file on the user's
current default disk. Set by GENCCPM.

Maximum memory allowed per process. Set
during GENCCPM.

Day File option. If this field 18 0FFH,
the operating system displays date and
time information when an RSP or CMD file
is invoked. Set by GENCCPM.

1-17

~oncurrent CP/M System Guide I.i0 SYSDAT Segment

Data Field

TEMP DISK

TICKS/SEC

LUL

CCB

FLAGS

MDUL

MFL

PUL

QUL

QHAU

RLR

DLR

DRL

PLR

THRDRT

Table 1-7. (oontlnued)

Explanation

Default temporary disk. Programs that
create temporary files should use this
disk. Set by GENCCPM.

The number of system ticks per second.

Locked Unused List. Link llst root of
unused Lock list items.

Address of the Character Control Block
Table, copied from the XIOS Header by
GENCCPM.

Address o~ the Flag Table.

Memory Descriptor Unused List. Link llst
Eoct oE unused Memory Descriptors.

Memory Free List. Link llat root of fees
memory partitions.

Process Unused List. Link list root of
unused Process Descriptors.

Queue Unused List, Link list root Of
unume4 Queue Uma0EiptoEs.

(~ueue buffer Merry Allocation Unit.

Ready List Root. Linked llgt of PUs that
are ready to run.

Delay List Root. Linked llst of PUs that
are delaying for a specified number o~
system ticks.

Dispatcher Ready List. Temporary holding
place for PD8 that have Just been made
ready to run.

Poll List Root. Linked list of PUs that
are polling on devices.

Thread List Root. Linked llst of all
current PDe on the system. The llst Is
threaded though the THREAD field of the PD
instead of the LIHK fie~d.

1-18

Concurrent CP/M System Guide i.i0 SYSDAT Segment

Data Field

QLR

MAL

VERSION

VERNUM

CCPMVERNUM

TOD DAY

TOD_yH

TOD MIN

TOD_SEC

NCONDEV

NLSTDEV

NCIODEV

LCB

OPEN FILE

Table 1-7. (oontlnued)

I Explanation

Queue List Root. Linked list of all
System ODs.

V.emory Allocation Listl link list of
active memory allocation units. A MAU is
created from one or more memory
partitions.

Address, relative to CCPMSEG, of ASCII
version string.

Concurrent CP/M version number (returned
by the S_BDOSVER system call).

Concurrent CP/M version number (system
call 163, S_OSVER).

Time of Day.
1978.

Time of Day.

Time of Day.

Time of Day.

Number of days since 1 Jan,

Hour of the day.

Minute of the hour.

Second of the minute.

Number of XIOS consoles, copied from the
XIOS Header by GENCCPM.

Number of XIOS list devices, copied from
the XIOS Header by GENCCPM.

Total number of character devices (NCONDEV
+ NLSTDEV).

Offset of the List Control Block Table,
copied from the XIOS Header by GENCCPM.

Open File Drive Vector. Designates drives
that have open files on them. Each bit of
the word value represents a disk drive;
the least significant bit represents Drive
A, and so on through the most significant
bit, Drive P. Bits which are set indicate
drives containing open files.

1-19

Conourcent CP/M System Guide i.i0 8YEDAT Segment

Table 1-7. (oontlnued)

Data Field Explanation

LOCX_MAX

0P~_Nax

OK~IR_8087

XPClI8

OFF 8087

8EG 8087

8Y8_87 0F

8¥8_878G

Maximum number of locked records per
process. Set during GENCCPM.

Maximum number of open disk files per
process. Sat during GENCCPM.

Process currently owning the 8087. Set to
0 if 8087 is not owned. Set to 0FFFFH if
no 8087 present.

~umber o f p h y s i c a l c o n s o l e s .

Offset of the 8087 interrupt vector in low
me~oryo

Segment of the 8087 interrupt vector in
low memory.

Offset of the default 8087 exception
handler.

Segment of the default 8087 exception
handler.

I.ii Res iden t S y e t m t P r o c e s s e e

Resident System Processes (REPs) are an integral part of the
Concurrent CP/Moperating system. At system generation, the G3NCCPM
RSP List menu lets you select which RaPs to include in the operating
my|tam. GENCCPM then places all selaoted RBPe in a contiguous area
of RNqsta=tlng at the end of SYSDAT. The main advantage of an REP
is that it Impermanently resident within the Operatlng System Area,
end deem n o t have t o be loaded f rom d i s k whenever i t Is needed.

Concurrent CP/M automatlcally allocates • Process Descriptor (PD)
and User Data Area (UDA) for a transient program, but each RBP is
responsible for the allc~atlon and inltlalisatlon of its own PD and
UDA. Concurrent CP/M uses the PD and QD structures declared within
an RSP directly if they fall within 64K of the 5YBDAT segment
address. If outside 64K, the RSPea PD and QD are copied to a PD or
QO allocated from the Process Unused List or the Queue Unused List.
In either case the PD and QD of the RSP lle within 84K of the
beginning of the SYSDAT Segment. This allows RSP8 to occupy nora
area than remains in the 64K SYSDAT segment.

1-20

Concurrent CP/M System Guide i.ii Resident System Processes

Further details on the creation and use of RSPs can be four~ In the
Concurrent CP/M Operating System Programmer's Reference Guide.

End of Section I

1-21

Secdon Z
System Generation

The Concurrent CP/M XiOS should be written as an 8080 model (mixed
code and data) program and orlglned at location 0C00H using the
ASM86 ORG assembler directive. Once you have written or modified
the XIOS source for a particular hardware configuration, use the
Digital Research assembler ASM-86'= or RASM-86 '= to generate an
XIOS.CON file for use with GENCCPM:

A>ASM86 XXO6

A>GE]R:~ID XIO8 8080

A>REM XIOS.C(JJ=XIO6.CMD

; Assemble the XIOS

; Create XIOS.CMD from XIOS.H86

; Rename XIOS.CMD to XIOS.CON

Then invoke the GENCCPM program to produce a system image in the
CCPM.SYS file by typing the command:

A>GEMCCPM ; generate system image

2.1 GEMCCPMOperatlon

You can generate a Concurrent CP/M system by running the GENCCPM
program under an existing CP/M or Concurrent CP/M system. GENCCPM
builds the CCPM.SYS file, which is an image of the Concurrent CP/M
operating system. Then you can use DDT-86" or SID-86" to place the
CCPM.SYS file in memory for debugging under CP/M-86.

GENCCPM allows the user to define certain hardware-dependent
variables, the amount of memory to reserve for system data
structures, the selection and inclusion of Resident System Processes
in the CCPM.SYS file, and other system parameters. The first action
GENCCPM performs is to check the current default drive for the files
necessary to construct the operating system image:

• SUP.CON
• RTM.CON
• MEM.CON
• CIO.CON
• BDOS.CON
• XIOS.CON
• SYSDAT.CON

Supervisor Code Module
Real Time Monitor Code Module
Memory Manager Code Module
Character Input~Output Code Module
Basic Disk Operating System Code Module
Extended Input~Output System Module
SYSDAT DATA and Internal Data modules of
SYSDAT segment

2-1

Concurrent CP/M System Guide 2.1 GENCCPM Operation

• VOUT. RSP
• PIN. RSP
• TMP. RSP
• CLOCK. RSP
• DIR.RSP
• ABORT. RSP

Virtual console OUTput process
Physical keyboard input process
Te~mlnal Message PrOcess
CLOCK process
DIRectory process
ABORT p r o c e s s

Motel *.RSP = Resident SyStem Process file. The VOUT, PIN, TMP,
and CLOCK RSPs are required for Concurrent CP/M to run. The RSPe
listed ere all distributed with Concurrent CP/M.

If GENCCPM does not find the preceding .CON files on the default
drive, it prints an error message on the consoles

Can't find these modules~ ,FILESPEC~...{cFILESPEC,}

where FILESPEC is the name of the missing file.

2 .2 GSMCCPMMain Menu

All of the GENCCPM Main Menu options have default values. When
generating s system, GENCCPM assumes the value shown in square
brackets, unless you specify another value. Any menu item that
requires a yea or no response represents a Boolean value, and can be
toggled simply by entering the variable. For example, entering
VERBOSE in response to the GENCCPM prompt will change the state of
the VERB08K variable fzoR the default state, [Y], to the opposite
state.

In the GENCCPM Main Menu illustrated in Figure 2-i, all numeric
values are in hexadecimal notation.

*** Concurrent CP/M 3.1 GENCCPM Main Menu ***

help
verbose [Y]

destdrive [As]
deleteeya [N]

GENCCPM Help
More Verbose GEMCCPM Messages
CCPM.SYS Output To (Destination) Drive
Delete (instead of rename) old CCPM.SYS file

syeparame
memory

diskbuffere
oalabel

raps

Display/Change System Parameters
Display/change Memory Allocation Partitions
Display/Change Disk Surfer Allocation
Display/Change Operating System Label
Display/Change RSP List

gensys I'm finished changing things, go GEN a SYStem

C h a n g e s ?

F i g u r e 2 -1 . GEECCI:'NMain Menu

2-2

Concurrent CP/M System Guide 2.2 GENCCPM Main Menu

If you type HELP in response to the GENCCPM Main Menu prompt
Changes?, as shown in this example:

Changes? HELP <cr>

the program prints the following message on the Help Function
Screen:

*** GENCCPM Help Function ***
=

GENCCPM lets you edlt and generate a system image from
operating system modules on the default ~isk drive. A
detailed explanation of each GENCCPM parameter may be
found in the Concurrent CP/M System Gulde, Section 2.

GENCCPM assumes the default values shown within square
brackets. All numbers are in Hexadecimal. To change a
parameter, enter the parameter name ~ollowed by "=" and
the new value. Type <cr> (carriage return) to enter the
assignment. You can make multiple assignments if you
separate them by a space. NO spaces are allowed wlthin
an assignment. Example:

Changes? verbose=N sysdrive=A: openmax=iA <cr>

Parameter names may be sh)rtened to the minimum
combination of letters unique to the currently displaye,|
menu. Example:

Changes? v=N des=A: del=Y <cr>

Press RETURN to continue...

Figure 2-2. GENCCPM Help Function Screen i

2-]

C o n c u r r e n t CP/M Sys tem Guide 2,2 GENCCPM Main Menu

Sub-menus (the last few ¢ptlone) are accessed by typing
the sub-menu name followed by <or>. You may enter
multiple sub- menus, In which case each sub-menu will be
d i s p l a y e d in o r d e r , Example :

Changes7 h e l p eyeparams rsp8 <or>

Enter ¢cr> alone to exit a menu, or 8 parameter name, "="
and the new value to assign a parameter. Multiple
assignments may be entered, as in response to the Main
Menu prompt.

P r e s s RETURN to continue.

F i g u r e 2 - 3 . ~ H s l p F u r ~ t i o u S c r e e n 2

Table 2-1 describes the remaining GENCCPM Main Menu options.

Table 2-1. GID|CCPHl4alnl4onuOptlone

Option I Explanation

V~RBOfE

DEBTDRIVE

DELET~SYB

8YSPARAMS

The GENCCI~ program messages are normally
verbose. However, sxperlenoed operators
might want to limit the in thl interest
of efficiency. Betting VIRBOSE to N
(no) limits the length of GENCCPM
messages to the absolute minimum.

The d r i v e u p o n w h i c h t h e g e n e r a t e d
CCPM.SY8 f i l e i s t o r e s i d e . I f no
destination drive ie specified, 01NCCPM
a s s u m e s t h e c u r r e n t l y l o g g e d d r i v e a s
the default.

Delete, instead of rename, old CCPM.SYS
file. Normally, G~NCCPM renanee the
previous s y s t e m file to CCPM.OLD before
building the new system image. By
specifying DELETESY8=¥, you c a u s e
GENCCPM tO delete the old file instead.
This Is useful when disk space is
limited.

Typing SYSPARAMS <or> displays the
GENCCPM System Parameter Menu. See
Figure 2-4 and accompanying text.

2-4

Concurrent CP/M System Guide 2.2 GENCCPM Main Menu

Option

MEMORY

DISKBUFFERS

OSLABEL

RSPS

GENSYS

Table 2-1. (continued)

l Explanation

Typing MEMORY <or> displays the GENCCPM
Memory Partition Menu. See Figure 2-5
and accompanying text.

Typing DISKSUFFERS <or> displays the
GENCCPM Disk Buffer Allocation Menu.
See Figure 2-7 and accompanying text.

Typing OSLABEL <or> displays the GENCCPM
Operating System Label Menu. See Figure
2-8 and accompanying text.

Typing RSPS ,or> displays the GENCCPM RSP
List Menu. See Figure 2-6 and
accompanying text.

Typing GENSYS <or> initiates the
GENeration of the SYStem file. When
using an input file to specify system
parameters, and the GENSYS command is
not the last llne in the input file,
GENCCPM goes into interactive mode and
prompts you for any additional changes.
See Section 2.9, "GENCCPM Input Files,"
for more information.

Note: To create the CCPM.SYS file you must type in the GENSYS
command, or include it in the GENCCPM input file.

2.3 System Parameters Menu

The GENCMD System Parameters Menu is shown in Figure 2-3. You
access this menu by typing SYSPARAMS in response to the Main Menu.

Note: All GENCCPM parameter values are in hexadecimal.

2-5

g o n c u r r e n t CP/M Sys t em G u i d e 2 . 3 Sys tem P a r a m e t e r s Menu

Display/Change System Parameters Menu

e y s d r i v e [B:]
t m p d r i v e [B:]

c m d l o g g i n g [N]
compa tn~de [Y]

menmax [4000]
openmex [20]
lockmax [20]

System Drive
Temporary File Drive
COmmand Day/File Logging at Console
CP/M FOB Compatibility Mode
Maximum Memory per P r o c e s s (paragraphs)
Open F i l e s p e r P r o c e s s Maximum
Looked Records p e r P r o c e s s Maximum

osstart [1008]
nopenfilea [40]

npdescs [14]
n q c b s [20]

qbufslze [400]
nflags [20]

C h a n g e s ?

Starting Paragraph of Operating System
Number of Open File and Locked Record Entries
Number of Process Descriptors
Number of Queue Control Blocks
Queue Buffer Total Size in bytes
Number of System Flags

F i g u r e 2 - 4 . ~gCkT.~q 6 y s t a Parzmeters Menu.

T a b l e 2-2. S y a t e n P a r ~ t m r s M e n u O p t i o n m

O p t i o n J E x p l a n a t i o n

SYSDRIVE The system drive where Concurrent CP/M
looks foe a tranale~t p r og r am wI~n it i s
not found on the current default drive.
All the commonly used transient
processes can thus be placed on one disk
under User Number 0 and are not needed
on every drive and user number. See the
Concurrent CP/M Operatln~ System User's
Guide for information on how the
ope~atlng system performs ~ils s e a r c h e s .

The d r i v e e n t e r e d h e r o i s u sed ae t h e
drive for temporary disk files. This
entry can be accessed in the System Data
Segment by application programs a s the
drive on which to create temporary
files. The temporary drive should be
the fastest drive in the system, for
example, the Memory Disk, if
implemented.

TMPDRIVE

2-6

Concurrent CP/M System Guide 2.3 System Parameters Menu

Table 2-2. (continued)

Option I Explanation

CMDLOGGING

COMPATMODE

~LEMMAX

OPENMAX

LOCI(MAX

Entering the response [Y] causes the
generated Concurrent CP/M Command Line
Interpreter (CLI) to display the current
time and how the command will be
executed.

CP/Me FCB Compatibility Mode [Y]. When
the default value [Y] is set, the
operating system recognizes the
compatibility attributes. Setting this
parameter to IN] makes the generated
system ignore the compatibility
attributes. See the Concurrent CP/M
Operating System Programmer's Reference
Guide, Section 2.1~, "Compatibility
Attributes," for more information on
this feature.

Maximum Paragraphs Per Process [4000]. A
process may make Concurrent CP/~ memory
allocations. This parameter puts an
upper limit on how much memory any one
process can obtain. The default shown
here is 256K (40000S) bytes.

Maximum Open Files per Process [20].
This parameter specifies the maximum
number of files that a single process,
usually one program, can open at any
given time. This number can range from
0 to 255 (0FFH) and must be less than or
equal to the total open files and locked
records for the system. See the
explanation of the NOPENFILES parameter
below.

Maximum Locked Records per Process [20].
This parameter specifies the maximum
number of records that a single process,
usually one program, can lock at any
given time. This number can range from
0 to 255 (0FFH) and must be less than or
equal to the total open files and locked
records for the system. See the
explanation of the NOPENFILES parameter
in the SYSPARAMS Menu.

2-7

Concurrent CP/M System Guide 23 System Parameters Menu

Table 2-2. (c~ntlnuod)

Option I Explanation

OSSTART

NOPENFILES

Starting Paragraph of the operating
system [1008]. The starting paragraph
is where the CCPMLDR is to put the
operating system Code execution starts
here, with the CS register set to this
value and the ZP register set to O. The
Data Segment Register is set to the
S¥SDAT segment address When first
bringing up and debugging Concurrent
CP/M u n d e r CP/M-85, the answer to thl8
cZuaetlon should be 8 plus where DOT-86
running under CP/M-86 reads in the file
using the R comland. The DOT86 R
oomaand a l s o c a n be u s e d t o read the
CCPM.STS file to a specific memory
location After debugging the system,
you might want to relocate it to an
address more appropriate to your
hardware oonflguratlon. Thln location
naturally depends on where the Boot
Sector and Loader are placed, and how
xuch RAM is used by ROM monitor or
memory-mapped I/O devices

Total Open Files in S~atem [40]. Thls
thsGy,~e'a=amet'r .peclfl.. 4:.he ~otal , 1 . , of

Lock List, vhich includes the
tc~cal nulber of o p e n dlsk files plus the
total number of locked records for all
the processes executing under Concurrent
CP/M at any given time Thln number
must be greater than or equal to the
maximum open files per p]:ocess (the
O~IOK%K parmaeter abw=ve) aria the uexluum
locked records per process (the LOCI~AX
parauete~ above)It is possible either
to allow each pro~es8 to use up the
total System Lock List epece, o r to
allow each process to only open a
fraction of the system total. The first
technique implies a eltuetlon where one
p r o c e s s can forcibly block o t h e r s
because i t has consumed all the
available Lock list items.

2-8

Concurrent CP/M System Guide 2.3 System Parameters Menu

Option

NPDESCS

NQCBS

OBUFSIZE

NFLAGS

Table 2-2. (continued)

Explanation

Number Of Process Descriptors [14]. For
each memory partition, at least one
transient program can be loaded and run.
If transient programs create child
processes, or if RSPs extend past 64K
from the beginning of SYSDAT, extra
Process Descriptors are needed. When
first brlnglnq up and debugging
Concurrent CP/M, the default for this
parameter suffices. After the debug
phase, during system tuning, you can use
the Concurrent CP/M SYSTAT Utility to
monitor the number of processes and
queues in use by the system at any time.

Number Of Queue Control Blocks [20]. The
number of queue Control Blocks should be
the maximum number of queues that may be
created by transient programs or RSPs
outside of 64k from SYSDAT. The default
value suffices during initial system
debugging.

Size Of Queue Buffer Area in Bytes [4001.
The Queue Buffer Area is space reserved
for Queue Buffers. The size of the
buffer area required for a particular
queue is the message length times the
number of messages. The Queue Buffer
Area should be the anticipated maximum
that transient programs will need.
Again, the default value will be
adequate for initial system debugging.
Note that the Queue Buffer Area can be
large enough (up to 0FFFFH) to extend
past the SYSDAT 64K boundary.

Size of the flag table [20]. Flags are
three-byte semaphores used by interrupt
routines. The number of flags needed
depends on the design of the XIOS. More
information on using flags for interrupt
devices can be found in Section 3 under
"Interrupt Devices". See also the
Concurrent CP/M Operating System
Programmer's Guide on Dev_flagset,
Dev_flagwt.

2-9

C o n c u r r e n t CP/M System Guide 2.4 MeBory Allocation Menu

2 ,4 ~ r y i t t l~.at lm~ menu

The Memory Allocation Partitlone Menu, shown in Figure 2-5, ie an
Interaotive menu. When the menu is first dleplayad, it lists the
ourrent meRory partitions. If none have been specified, the list
field is blank. Following the list is the menu of options
available. You may choose either to ADD to the list of partitlons,
or to DELETE one or more partitions. Partition assignments must be
made by specifying either ADD or DELETE, followed by an equal sign,
the starting address and last address of the memory region to be
partitioned, and the else, in paragraphs, of eaoh partition. All
values must be in hexadeolmsl notation and separated by commas. An
asterisk can be used to delete all memory partitions. The Start and
Last values are paragraph addresses1 multiply them by 15 (10E) to
obtain absolute addresses. Similarly, partition sizes are in
paragraphs! multiply by 16 (10E) to obtain size in bytes.

Xn the sx~utplo below, all deZaul~ memory partitions are first
deleted (DILETJ=*). Then two kinds of iemory partitions are added
to the lists 16K (4000h~ partitions fred address 2400:0 to 4000:0,
and 32K (8000h) partitions from 4000s0 to 6000:0.

Addresses Partitions (in paragraphs)
Start Last SiZe Qty
i. 400h 6000h 400h 17h

D i s p l a y / C h a n g e Mise ry Allo~a~Lon P a r t i t i o n s
add ADD memory p a r t l t l o n (e)

de le te DELETE memory partltlon(s)

Changes? delete-* add=2400,4000,400 add=4000,600Q,800

Addresses Partitions
Start Last Size Qty
1. 2400h 4000h 400h 7h
2. 4000h 6000h 800h 4h

Display/Change Memory Allocation Partitions
add ADD memory partition(s)

delete DELETE memory partitlon(s)

Changes? <or>

F igure 2-5. EgaK~PUMemory Allocation Eauple Eesalon

2-10

Concurrent CP/MSyetem Guide 2.4 Memory Allocation Menu

Memory partitions are highly dependent on the particular hardware
environment. Therefore, you should carefully examine the defaults
that are given, and change them if they are inappropriate. The
memory partitions cannot overlap, nor can they overlap the operating
system area. GENCCPM checks and trims memory partitions that
overlap the operating system but does not check for partitions that
refer to nonexistent system memory. GENCCPM does not size existing
memory because the hardware on which it is running might be
different from the target Concurrent CP/M machine (this might he
done by the XIOS at initialization time). Error messages are
displayed in case of overlapplng or incorrectly sized partitions,
but GE~CCPM does not automatically trim overlapping memory
partitions. GENCCPM does not allow you to exit the Main Menu or the
Memory Allocatlon Menu if the memory partition llst is not valid.

The nature of your application dictates how you should specify the
partition boundaries in your system. The system never divides a
single partition among unrelated programs. If any given memory
request requires a memory segment that is larger than the available
partitions, the system concatenates adjoining partitions to form a
single contiguous area of memory. The MEM module algorithm that
determines the best fit for a given memory allocation request takes
into account the number of partitions that will be used and the
amount of unused space that will be left in the memory region. This
allows you to evaluate the tradeoffs between memory allocation
boundary conditions causing internal versus external memory
fragmentation, as described below.

External memory fragmentation occurs when memory is allocated in
small amounts. This can lead to a situation where there is plenty
of memory but no contiguous area large enough to load a large
program. Internal fragmentation occurs when memory is divided into
large partitions, and loadlng a small program leaves large amounts
of unused memory in the partition. In this case, a large program
can always load if a partition is available, but the unused areas
within the large partitions cannot be used to load small programs if
all partitions are allocated.

When running GENCCPM you can specify a few large partitions, many
small partitions, or any combination of the two. If a particular
environment requires running many small programs frequently and
large programs only occaslonally, memory should be divided into
small partitions. This simulates dynamic memory management as the
partitions become smaller. Large programs are able to load as long
as memory has not become too fragmented. If the environment
consists of running mostly large programs or if the programs are run
serially, the large-partltion model should be used. The choice is
not trivlal and might require some experimentation before a
satisfactory compromise is attained. Typical solutions divide
memory into 4K to 16K partitions.

2-11

Concurrent CP/M Sys tem Guide 2.5 GEHCCPM RSP List Menu

2 .5 (;BNCCI~RSP Llet Menu

The GENCCPM RSP (Resident System Process) List Menu is shown in
Figure 2-6. The example session illustrates excluding ABORT.RaP and
MY.RSP from the list of RSPS to be included in the system.

RaPs to be i n c l u d e d a r e :

PIN.RSP DIR.RSP
VOUT.RSP CLOCK.RaP

Display/Change RaP List

include Include RSPs
exclude Exolude RSPs

Changes?exclude-abort.=|p,my.rsp

RaPs t o he i n c l u d e d i r e ;

PIN.RSP DZR.RSP
TMP.qSP

Chan~es? <or>

F i g u r e 2 - 5 .

ABORT.RSP TMP.P~P
MY.RSP

VOUT.RSP CLOCK.RSP

C~NCc.Rq RSP L i n t Menu a a I p l e S e s s i o n

The GENCCPM RSP List Menu first reads the directory of the current
default dlsk and lists all .RSP files present. Responding to the
GEHCCPM prompt Changes? with either an include or exclude command
edits the llst of RaPs to be made part of the operating system at
system generation time. The wildcs=d (*l) file specification can be
used with the include command to aut~aticslly include all .RaP
files on the disk.

101:11= The P~N, VOUT, and CLOCK RSPa saust be included for Concurrent
CP/M to run.

2 - 1 2

Concurrent CP/M System Guide 2.6 GENCCPM OSLABEL Menu

2.6 GEICCPM OSLABEL Menu

If you type 0SLABEL in response to the main menu prompt, as shown in
this example:

Changes? OBLABEL

the following screen menu appears on your screen:

Display/Change Operating System Label
Current message is:
<nulls

Add lines to message. Terminate by entering only RETURNz

Figure 2-7. GEKCCPMOperatlng System Label Menu

You can type any message at this point. This message is printed on
each virtual console when the system boots up. Note that if the
message contains a $, GENCCPM accepts it, but it causes the
operating system to terminate the message when it is being printed.
This is because the operating system uses the C WRITESTR function to
print the message, and $ is the default message terminator.

The XIOS might also print its own sign-on message daring the INIT
routine. In this case, the XIOS message appears before the message
specified in the GENCCPM OSLABEL Menu.

2.7 GEMCCPM Disk Buffering Menu

Typing DISKBUFFERS in response to the main menu prompt displays the
GENCCPM Disk Buffering Menu. Figure 2-8 shows a sample session:

2-13

ConcL]rcent CP/H S y s t e m Guide 2.7 GEHCCPM Buffering Menu

*** Dlsk Buffering Information ***
Dir qax/PEOC Data Max/PrOc Hash Spe¢ifled

Dry Burs Dir Bufs Bulb Dat Burs -leg Buf Pgpha
m = = = = m = t ~ = ~ = = = = = = = ~ m = = m m = = ~ m ~ = = = m ~ = = m u =

A: ?? 0 ?? 0 yes ??
B: ?? 0 ?? 0 yes ??
C: ?? 0 ?? 0 y e s ??
D: ?? 0 ?? 0 y e s ??
E: 77 0 ?? O yes 77
M: ?? 0 f i x e d f i x e d ??

Total paragraphs allocated to buffers: 0
Drive (<or> to exit) 7 az
Number of directory buffers, or drive to share with? 8
Maximum directory buffers per process [8] ? 4
Number of data buffers, or drive ~o share with? 4
Maximum data buffers per process [4]? 2
Hashing [yes] ? <or>

*** Disk Buffering Inforaatlon ***
Dir Max/Proc

Dry Bufs Dir Burs

A: 8 4
B: 77 0
C: 77 0
D: ?? 0
E: ?? 0
Mz 77 0

Data Mex/Proc Hash Specified
Bufs Dat Burs -ing Bur Pgph8

4 2 yes 200
?? 0 yes ??
?? 0 yes ??
?? 0 yes ??
?? 0 yes ??

fixed fixed ??
Total paragraphs allocated to bufEerm8 200

Drive (<or> to exit) ? *t
Number of directory buffers, or drive to share with? a:
Number of data buffers, or drive to share with? a:
Hashing [yes] 7 <or>

*** Disk Buffering Information ***
Dir Max/Proc Data Max/Poor Hash 8peoifled

Dry Bufs DiE Burs Bufs Dat Burs -leg Bur Pgphs

Az 8 4 4 2 yes 200
B: shares Ax shares A: yes 80
C: shares As shares A: yes 20
D: shares A: shares A: yes 18
E: shares As shares As yes i0
M: shares As fixed fixed 0

Total paragraphs allocated to buffersz 2(:8

Drive (<or> to exit) ? <rE>

Figure 2-8. GIICCPN DLmk Buffering 8aIple Session

2-14

Concurrent CP/M System Guide 2.7 GENCCPM Suffering Menu

In the sample session shown in Figure 2-8, GENCCPM is reading the
DPH addresses from the XIOS Header, and calculatlng the buffer
parameters based upon the data in the DPHs and the answers to its
questions. GENCCPM only asks questions for the relevant fields in
the DPH that you have marked with OFFFFh values. See Section 5.4,
"Disk Parameter Header," for a detailed explanation of DPH fields
and GENCCPM table generation. An asterisk can be used to specify
all drives, in which case GENCCPM applles your answers to the
following questions to all unconflgured drives.

Note that GENCCPM prints out how many bytes of memory must be
allocated to implement your disk buffering requests. You should be
aware that disk buffering decisions can significantly impact the
performance and efficiency of the system being generated. If
minimizing the amount of memory occupied by the system is an
important consideration, you can use the Disk Buffering Menu to
specify a minimal disk buffer space. We have found, however, that
the amount of Directory Hashing space allocated has the most impact
on system performance, followed by the amount of Directory Buffer
space allocated. As with the trade-offs in memory partition
allocation discussed above, deciding on the proper ratio of
operating system space to performance requires some experimentation.

Note also that if DOS media is supported, directory hashing space
must be allocated for the DOS file allocation table (FAT). See
Section 5.5.1 for information on allocating enough space for the FAT
and the hash table.

GENCCPM checks to see that the relevant fields in the DPHs are no
longer set to 0FFFFH. GENCCPM does not allow you to exit from the
Main Menu until these fields have been set using the Disk Buffering
Menu.

2.8 GER{~ZPM ~S~"~ Optio~

Finally, specifying the GENSYS option in answer to the main menu
prompt causes GENCCPM to generate the system image on the specified
destination disk drive. During the actual system generation, the
following messages print out on the screen:

2-15

Concurrent CP/M System Gulde 2.8 GENCCPHGENEYS Option

Generating new SYS file
Generating tables
Appending REPa to system file
Doing Fixups
SYS image load map~

Code starts at GGGGh
Data starts at Hl~Bh

Tables start at llilh
RSPs start at JJJJh

XIOS Buffers start at KKKKh
End of OB at LLLLh

Trlming memory partitions. Hew Lists

Addresses Partitions
(in Paragraphs) Slze How

Start Last (Paras.) Many
i. AAAAh BBBBh XXXXh Yh
2. ~ h RNNNh QOOQh Vh

I
(only if
necessary)

I
V

Wrapping up

A>

Flguzm 2 -9 . GNK:(:PM glm~Llm ~ a t i o n ~ u

2.9 ~ Input F i l e s

~NCCPM allows you to input all system generation commands frou an
input file. You can also redirect the oonmole output to a dlgk
file. You UH theae GENCCPNfeaturssh¥ invoking it wlthoommand of
t h e forms

GXNCCPM <fllsln >fileout

where fileln is the name of the GBNCCPM input file. Note that no
spaces can intervene between the greater-then or less-than sign and
the file specification. If this condition is not mat, GENCCPM
responds with the massager

REDIRECTION ERROR

The f o r m a t o f t h e i n p u t f i l e i s s i m i l a r t o a SUBMIT f i l e ! each
command i s e n t e r e d on a s e p a r a t e l i n e , f o l l o w e d by a c a r r i a g e
r e t u r n , e x a c t l y i n t h e o r d e r r e q u i r e d d u r i n g a m a n u a l l y o p e r a t e d
GENCCPM session. The last command can be followed by a carriage
return and the cowhand:

A>GmmT8

2-16

Concurrent CP/M System Guide 2.9 GENCCPM Input Files

to end the command sequence and generate the system. If the GENSYS
command is not present, GENCCPM queries the console for changes.

The following example illustrates the use of the GENCCPM input file.
Assuming that the input file file specification is GENCCPM.IN, use
the following command to invoke GENCCPMz

A>GENCCPM <GENCCPK. IN

Figure 2-10 shows a typical GENCCPM command file:

VERBOSE=N DESTDRIVE=D:
SYSPARAMS
OSSTART=4000 NPDESCS=20 QBUFSIZE=4FF TMPDRIVE=A: CHDLOGGING=Y
<or>
MEMORY
DELETE=* ADD=2400,4000,400 ADD=4000,6000,800
<or>
DISKBUFFERS
A:
8
4
4
2
hashing
*: ; for all remaining drive questions
A: ; share directory buffers with A:
A: ; share data buffers with A:
hashing ; hashing on all drives
<cr>
OSLABEL
Concurrent CP/M Version 1.21 04/15/83
Hardware Configuration:

A: I0 ME Hard Disk
B: 5 ME Hard Disk
C: Single-density Floppy
D: Double-density Floppy
M: Memory Disk

<cr>
GENSYS <or> • Only if you do not want to be able

to specify additional changes

Figure 2-10. Typical GE]ICCPMComaand F i l e

After reading in the command file and optionally accepting any
additional changes you want to make, GENCCPH builds a system image
in the CCPM.SYS file in the manner described in Section 2.1.

End of Section 2

2-17

Section 3
XIOS Overview

Concurrent CP/M Version 3.1, as implemented with one of the example
XlOb's discussed in Section 3.1, is configured for operation with
the Compu-Pro with at least two 8-inch floppy disk drives and at
least 128K of RAM. All hardware dependencies are concentrated in
subroutines collectlvely referred to as the Extended Input/Output
System, or XIOS. You can modlfy these subroutines to tailor the
system to almost any 8086 or 8088 dlsk-based operating environment.
This section provldes an overview of the XIOS, and variables and
tables referenced within the XIOS.

The following material assumes that you are familiar with the CP/M-
86 BIOS. To use this material fully, refer frequently to the
example XlOS's found in source code form on the Concurrent CP/M
dlstrlbution disk.

Note: Programs that depend upon the interface to the XIOS must
check the version number of the operating system before trying
direct access to the XIO8. Future versions of Concurrent CP/M can
have different XIOS interfaces, including changes to XIOS function
numbers and/or parameters passed to XIOS routines.

The XIOS must fit within the 64K System Data Segment along with
the SYSDAT and Table Area. Concurrent CP/M accesses the XIOS
through the two entry points INIT and ENTRY at offset 0C00H and
OC03H, respectively, in the System Data Segment. The ~NIT entry
point is for system hardware initialization only. The ENTRY entry
point is for all other XIO8 functions. Because all operating system
routines use a Call Far instruction to access the XIOS through these
two entry points, the XIOS function routines must end with a Return
Far instruction. Subsequent sections describe the XIOS entry points
and other fixed data fields.

3 . 1 XIOS H e a d e r

The XIOS Header contains variables that GENCCPM uses when
constructing the CCPM. SYS file and that the operating system uses
when executing. Figure 3-1 illustrates the XIOS header.

3-1

Concurrent CP/M System Guide 3.1 XIOS Header

C00H

C08H

ClGH

C18H

C20H

C28H

C30H

C38H

JMP INIT
l !

SUPERVISOR

NPCNS I NVCNS

DPH(A)
J

DPH(E)
I

DPH(I)
I

DPH(M)
I

ALLOC

JMP ENTRY
!

I SCCB NLCB

DPH(B)
I

DPH(F)
I

DPH(J)
I

DPH(N)

TICK TICKS
SEC

CCB
I

DPH(C)
I

DPH(G)
I

DPH(K)
J

DPH(O)

SYSDAT

DOOR RESER-
VED

LCB
I

DPH(D)
I

DPH(H)
I

DPH(,)
I

DPH(P)

Figure 3-1. XIOB Header

Data Field

JMP INIT

JMP ENTRY

Table 3-I. XZO8 Header Data Fields

Explanation

XIOS Inltiali~atlon Point. At system boot, the
Supervisor moduls ozecutsa s CALL FAR
Ir,mtructlon to this location in the XIOE {XZOE
Code Segments OC00H). Thim call trannfar|
control to the XIOS ZNIT routine, which
initializes the XTOS end hardware, then
exeouten a RETURN FAR instruction. The JMP
INZT instruction must be present in the
XTOS.A86 file. For details of the ZNZT routine
ale Section 3.~, "INIT Kntry Point."

XTOS Entry Point. All access to the XZOS
funotlons goes through ths XIOB Entry Point.
The operating lyltel executes a far call
(CALLF) to this lo~ation in the XZOS (XIOS Code
Se~mentt 0C03H) whenever I/O is needed. Thim
instruction transfers control to the XIO8 ENTRY
routine which calls the appropriate function
within the XIOS. Once the function Is
complete, the ENTRY routine executes a return
far (RETF) to the operating system. The RETF
instruction must be present in the XIOS.A86
file. For details of the ENTRY routine, see
Section 3.3, "XIOS ENTRY."

3-2

Concurrent CP/M System Guide

Table 3-I. (continued)

3.1 XIOS Header

I
Data Field I Explanation

SYSDAT

SUPERVISOR

The segment address of SYSDAT. It is in the
Code Segment of the XIOS to allow access to
data in SYSDAT while in interrupt routines and
other areas of code where the Data Segment is
unknown. For example, the following routine

current process's Process accesses the
Descriptor •

DSEG

RLR

ORG 68H ~ point to RLR field
of SYSDAT

RW 1 ~ does not generate
; a hex value

CSEG ~ of XIOS

PUSH DS ~ Save XIOS Data
; Segment

MOV DS,CSzSYSDAT ; Move the SYSDAT
; segment address
; into DS

MOV BX, RLR ; Move the current
; process's PD
; Address into BX

and perform
T operation. (See
; Fig 1-5 for expla-

nation of RLR)
POP DS ; Restore the XIOS

Data Segment

This variable is initialized by GE~CCPM.

EAR Address (double-word pointer) of the
Supervisor Module entry point. Whenever the
XIOS makes a system call, it must access the
operating system through this entry point.
GENCCPM initializes this field. Section 3.8,
"XIOS System Calls", describes XIOS register
usage and restrictions.

3-3

