[l DIGITAL BESEARLCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M SYSTEM ALTERATION GUIDE

COPYRIGHT (e) 1976, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

Copyright (c¢) 1976, 1976 by Digital Research, All rights
reserved, No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronie, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any percon of such revision or
changes.

(e
11
O
,_4
[t1]
(@]
rh
O
(@]
)
ct
3]
3
(r
tn

Section
1. INTRODUCTION Lcueeesaasocsnosnsoansass
2. FIRST LEVEL SYSTEM REGENERATION ...
3. SECOND LIZVEL SYSTEM REGENERATION ..
4, SAMPLE GETSYS AND PUTSYS PRCGRAMS |
S. DISKETTE CRGANIZATION .,ceececavocces
6, THE BIQS ENTRY POINTS .evoeencccocns
7. A SAMPLE BIO0S .iuceeccescescasccoccas
3. A SAMPLE COLD START LCADER c4veeeses
23, RESERVED LOCATIONS IN PAGE ZEZRO ...
13. NOTES f2R USZRS CrF CP/M VERSICN 1.3

.

Apvendix
E MDS LCADER MQUVZ DPRCGRAM
E MDS COLD START LCADER
HE MDS BASIC I/O 3YSTEM (BIOS)
SXELETAL CBICS

SKRELETAL GETSYS/PUTSYS 2PRCGRAM
SXELETAL COLD START LOADER

[t)]

RN R = = = O o 0

[POI0 S GO TR SN I SN 0O B b

L] 1]

CP/M System Alteration Guide

1, INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS microcomputer
development system, but is designed so that the user can alter a specific set
of subroutines which define the hardware operating enviromment, 1In this way,
the user can vrcduce a diskette which operates with a non-standard (kbut
IBM~compatible format) drive controller ard/or rericheral devices,

In order to achieve device independence, CP/M 1is separated into three
distinct modules:

BIOS - Basic I/O System which is environment dependent

BCOS - Basic Disk Cperating System which is not dependent upon
the hardware configuration

CCP - the Console Command Processor which uses the BDCS

Of these modules, only the BIOS is dependent upon the particular hardware,
That is, the user can "patch” the distribution wversion of CP/M to provide a
new BIOS which provides a customized interface between the remaining CP/M
modules and the user’s own hardware system. The purpose of this document is
to provide a step-by-step vrocedure for patching the new BICS into CP/M.

The new BIOS requires some relatively simple software development and
testing; the current BIOS, however, is listed in Appendix C, and can be used
as a model for the customized package. A skeletal version of the BIOS is
given in Appendix D which can form the base for a modified BIOS. 1In addition
to the BIOS, the user must write a simple memory loader, called GETSYS, which
brings the ocerating system into memory. In order to patch the new BICS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which places
an altered version of CP/M back onto the diskette, PUISYS is usually derived
from GETSYS by changing the disk read commands into disk write commards,
Sample skeletal GETSYS and PUTSYS programs are described in Section 3, and
listed in Appendix E. In order to make the CP/M system work automatically,
the user must also supply a cold start loader, similar to the one provided
with CP/M (listed in Appendices A and B), A skeletal form of a cold start
loader is given in Appendix F which can serve as a model for your loader,

2, FIRST LEVEL SYSTEM REGENERATICN

The rrocedure to follow to patch the CP/M system is given below in several
steps. Address references in each step are followed by an "H" to denote the
hexadecimal radix, and are given for a 16K Cp/M system. For larger CP/M
systems, add a "bias" to each address which is shown with a "+b" following it,
where b is egual to the memory size minus 16K, Values for b in wvarious
standard memory sizes are

24K: b = 24K - 16K = 8K = @20060H
32K: b = 32K - 16K = 16K = (4000H
40K b = 40K - 16K = 24K = (6006H
48K: b = 48K - 16K = 32K = (800¢H
5€K: b = 56K - 16K = 40K = {AGOUH
62K: b = 62K - 16K = 46K = ¢B8OOH
64K b = 64K - 16K = 48K = 0CQ@PH

Note: The standard distribution version of CP/M is configured as a 16K
system. Therefore, you must first bring up the 16K Cp/M system, and then
configure it for your actual memory size (see Second level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the first two
tracks of a diskette into memory., The data from the diskette must begin at
location 288pd, Code GETSYS so that it starts at location 18@H (base of the
TPA), as shown in the first part of Appendix E,

(2) Test the GETSYS program by reading a blank diskette into memory, and
cneck to see that the data has been read properly, and that the diskette has
not been altered in anv way by the GETSYS program,

(3) Run the GETSYS program using an initialized CP/M diskette to see if
GETSYS loads CP/M starting at 2888H (the operating system actually starts 128
bvtes later at 2900H).

(4) Review Section 4 and write the PUTSYS vrogram which writes memory
starting at 2888H back onto the first two tracks of the disketts. The PUISYS
program should be located at 200H, as shown in the second part of Appendix E.

(5) Test the PUTSYS program using a blank uninitialized diskette by
writing a vortion of memory to the first two tracks; clear memory and read it
back using GETSYS. Test PUISYS completely, since this program will be used to
alter CP/M on disk,

(6) Study Sections 5, 6, and 7, along with the distribution version of
the BIOS given 1in Appendix C, and write a simple version which performs a
similar function for the customized ernviromment, Use the program given in
Appendix D as a model. Call this new BIOS by the name CBIOS (customized
BIOS). Implement only the wrimitive disk operations on a single drive, and

simple console irput/output functions in this phase.

(7 Test CBICS completely to ensure tnat it properly performs console
character I/0 and disk reads and writes, Be especially careful ko ensure that
no disk write operations occur accidently during read operaticns, and check
that the proper track and sectors are addressed on all reads and writes,
Failure to make these checks may cause destruction of the initialized CP/#
system after it is pvatched.

(8) Referring to Figure 1 in Section 5, note that the BIOS is lccated
between locations 3E20H and 3FFFH. Read the CP/M system using GETSYS, and
replace the BIOS segment by the new CBIOS developed in step (6) and tested in
step (7). This replacement is done in the memory of the machine and will be
placed on the diskette in the next step.

(9) Use PUISYS to place the vatched memory image of CP/M onto the first
two tracks of a blank diskette for testing. '

(1) Use GETSYS to bring the copied memory image from the test diskette
back into memory at 288@H, and check to ensure that it has loaded back
proverly (clear memory, if possible, before the load)., Upon successful load,
oranch to the cold start code at location 3E@@H, The cold start routine will
initialize page zero, then jump to the CCP (location 2909H) which will call
the BDOS, which will call the CBIOS, The CBIOS will be asked to read several
sectors on track 2 twice in succession, and, if successful, CP/M will type
YAS",

When you make it this far, you are almost on the air, If you have trouwble,
use whatever debug facilities you have available to trace and breakpoint your
CBIOS.

(11) Upon campletion of step (18), CP/M has orompted the console for a
command irput. Test the disk write operation by typing

SAVE 1 X,COM

(recall that all cammands must be followed by a carriage return). CP/M should
respond with another wromot (after several disk accesses):

A>
If it does not, debug your disk write functions and try again.
(12) Test the directory cammand by typing
DIR
CP/M should respond with

A: X oM

(13) Test the erase command by typing
ERA X,COM

CP/M should respond with the A prompt. When vou make it this far, you should
have an operational system which will only reguire a bootstrap loader to
function campletely.

{(14) Write a bootstrap loader which is similar to GETSYS, and place it
on track @, sector 1 using PUISYS (again using the test diskette, not tne
distribution diskette). See Sections 5 and 8 for more information on the
bootstrar operation,

(15) Retest the new test diskette with the bootstrap loader installed by
executing steps (11), (12), and (13). Upon completion of these tests, tvpe a
control-C (control and C keys simultaneously). The system should then execute
a "warm start" which reboots the system and tyves the A> prompt.

(16) At this mint, you rrobably have a aood version of vour customized
CP/M system on your test diskette, Use GETSYS to load CP/M from your test
diskette, Remove the test diskette, place the distribution diskette (or a
legal copy) into the drive, and use PUISYS to replace the distribution version
by vour customized version, Do not make this replacement if you are wunsure cf
vour paich since this step destroys the system which was sent to you from
Digital Research.

(17) Load your modified CP/M system, and test it by typing
DIR

Cp/M should respond with a list of files which are provided on the initialized
diskette., One swuwh file should be the memory image for the debugger, called
DDT.COM,

NOTE: from now on, it is important that you always reboot
the CP/M system if a diskette is removed and replaced

by another diskette, unless the new diskette is to be

read only.

(18) Load and test the debugger by typing
BT
(see the document "CP/M Dynamic Debugging Tocl (DDT)" for operating
information and examples). Take time to familiarize vyourself with DDT; it

will be your best friend in later steps.

(19) Before making further CRIOS modifications, practice using the editor
(see the ED user s guide), and assembler (see the ASM user’s guide). Then

racode and test the GETSYS, PUTSYS, and C3I0OS programs using ED, ASM, and
DDT. <Ccde ard test a (QOPY program which does a sector-to-sector cooy from one
diskette to another to obtain back-up copies of the original diskette (NOTE:
read your CP/M Licensing Agreement; it specifies your legal responsibilities
when cooying the CP/M system). Place the copyright notice

Copyright (c) 1978
Digital Research

on each copy which is made with your COPY program.

(29) Modify your CBIOS to include the extra functions for ovunches,
readers, signon messages, and so-forth, and add the facilities for additional
drives, if they exists on your system, You can make these changes with the
GETSYS and PUISYS programs which you have developed, or you can refer to the
following section, which cutlines Cp/M facilities which will aid you in the
regeneration rrocess,

You now have a good copy of the customized CP/M system, Note that
although the CBIOS portion of CP/M which you have develoved belongs to you,
the modified version of CP/M which vou have created can be copied for your use
only (again, read your Licensing Agreement) and cannot be legally copied for
anyone else’s use,

It should be noted that your system remains file~-compatible with all other
CP/M systems, which allows transfer of non-proprietary software between users
of Cp/M,

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to configure CP/M
for your memory size., In general, you will first get a memory image of CP/M
with the "MOVCPM" program (system relocator) and vlace this memory image onto
a named disk file, The disk file can then be loaded, examined, patched, and
replaced using the editor, assembler, debugger, and system generation program,
For further details on the operation of these proarams, see the "Guide to CP/M
Features and Facilities” manual.

To get the memory image of CP/M into the TPA configured for the desired
memory size, give the command:

MOVCPM xx *

where "xx" 1is the memory size in decimal K bytes (e.g., 32 for 32K). The
response will be:

CONSTRUCTING xxK CP/M VERS 1.4
READY FOR "SYSGEN" OR
"SAVE 32 CPMxx,OM"

At this rpoint, the image of CP/M in the TPA is configured for the desired
memory size, The memory image is at location @960H through 287FH (i.e., the
BOOT is at 0900H, the CCP is at 98@H, and the BIOS is at 1E80H). Note that
the memory image has the standard MES-8¢€ BIOS and BOOT on it, It is now
necessary to save the memory image in a file so that you can patch vour CBICS
and CBCOT into it:

SAVE 32 CPMxx,CCM Save 20H = 32 pages of memory

The memory image created by the "MOVCPM" program is offset by a negative bias
so that it loads into the free area of the TPA, and thus does not interfere
with the operation of CP/M in higher memory. This memory image can be
subsequently loaded under DLCT and examined or changed in prepvaration for a new
generation of the system, DDT is loaded with the memory image by typing:

DDT CPMxx.,COM Load DDT, then read the CPM image
DDT should resvond with

NEXT PC
21e¢ 9199

You can then use the disvlay (D) and disassembly (L) commands to examine
portions of the memory image between 9¢0H and 207FH., Note, however, that to
find any wparticular address within the memory image, vou must apoly the
negative bias to the CP/M address to find the actual address., Track 0@,
sector 91 is loaded to location 9¢@H (you should find the cold start loader at

9¢PH to 97FH), track @0, sector 92 is loaded into 98@H (this is the base of
the CCP), and so—-forth through the entire Cp/M system load. In a 16K system,
for example, the CCP resides at the CP/M address 29Q0H, but is vlaced into
memory at 98JH by the SYSGEN proaram. Thus, the negative bias,denoted bv n,
satisfies

2900H + n = 989H, or n = 98¢H - 2900H
Assuming two’s camplement arithmetic, n = @E@80H, which can be checked bv
29@0H + JEJ80H = 10980H = 098¢H (ignoring high-order overflow),
Note that for larger systems, n satisfies
2900H+b) + n = 980H, or

980H - (29094 + b), or

(
n
n = JEJ89H - b.

The value of n for cammon CP/M systems is given below

memory size bias b negative offset n
16K palalilst gEQ8OH - (000H = JEJ80H
24K 20008 JEJB0H - 2000H = JCA80CH
32K 43004 QEQ8OH - 4009H = JAJ80H
40K 60004 PEG89H - 6000H = 8086H
48K 800034H AEG8JH -~ 8080H = 60808
56K gAB00H PECB8OH - 0AQ0O0H = 4¢80H
62K OgBBOVH JEQBYH - (B80GOH = 2880H
64K 9CO0G0H PEG8YH - @CAQOH = 208CH

Assume, for =xample, that vou want to locate the address x within the memory
image loaded under DDT in a 16K system., First type

Bx,n Bexadecimal sum and difference
and DDT will respond with the value of x+n (sum) and x-n (difference), The
first number vrinted by DDT will be the actual memory address in the image
where the data or code will be found. The input

H2900,E080

for example, will produce 980H as the sum, which is where the CCP is located
in the memory image under DODT.

Use the L command to disassemble portions of your CBIOS located at (3EZ9H+b)+n
which, when you use the H command, produces an actual address of 1E80H. The
disassembly cammand would thus be

L1E89

Terminate DDT by typing a control-C or "G@" in order to prepare the patch
program, Your CBIOS and BOOT can be modified using the editor and assembled
using ASM, producing £iles called CBIOS,HEX and BOOT.HEX which contain the
machine code for CBIOS and BOOT in Intel hex format, In order to integrate
your new modules, return to DDT by typing

DDT CPMxx,COOM Start DCT and load the CPMxx image
It is now necessary to patch in your CBOOT and CBIOS routines, The BOOT
resides at location @930H in the memory image. If the actual load address is
X , then to calculate the bias (m) use the command:

HO@gd,x Subtract load address from
target address,

The second number typed in response to the cammand is the desired bias (m).
For example, if your BOOT executes at 0886H, the command:

H9¢8,80
will reply
@98¢ 088¢ Sum and difference in hex.

Therefore, the bias "m" would be @88¢H, To read the BOCT in, give the
command:

ICBOOT HEX Input file CROOT.HEX
Then:
Rm Read CBOOT with a bias of
m (=903H-x)

You may now examine your CBOOT with:
L9900

Wz are now ready to replace the CBIOS, Examine the area at 1ES8OH where the
previous version of the CBICS resides. Then type

ICBICS,HEX Ready the hex file for loading
Assume that your CBIOS is being integrated into a 16K CP/M system, and thus is
based at location 3E@CH. In order to properly locate the CBIOS in the memory
image under DDT, we must apply the negative bias n for a 16K system when
loading the hex file, This is accomplished by tyoing

RE(8E) Read the file with bias 0E@80H

Upon campletion of the read, re-examine the area where the CBIOS has been
loaded (use an "L1E88" cammand), to ensure that it was loaded vroperly. When
you are satisfied that the patch has been made, return from DDT using a
control-C or "“G@" cammand.

Now use SYSGEN to place the patched memory image back onto a diskette (use
a test diskette until you are sure of vour patch), as shown in the followinrg
interaction:

SYSGEN Start the SYSGEN program

SYSGEN VERSICN 1.4 Sign-on message from SYSGEN

SCOURCE CRIVE NAME (OR RETURN TO SKIP)
Resprond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.

DESTINATION DRIVE NAME (OR RETURN TO REBCOT)
Respond with B to write the new
system to the diskette in drive
B.

DESTIMATION ON B, THEN TYPE RETURN
Hit the return kev to rerform
the actual write,

FUNCTICN COMPLETE

DESTINATICN CRIVE NAME (OR RETURN TO REBOOT)
Resrond with a carriage return
to reboot,

Place the test diskette on drive B (if you are operating with a single-drive
system, answer "A" rather than "B" to the DESTINATION request; then remove
vour diskette, and replace it with the test diskette), and tyre a return, The
system will be replaced on the test diskette. Test the new CP/M system by
placing the test diskette in drive A and cold-starting,

Write the Digital Research cooyright notice on the diskette, as specified
in your Licensing Agreement:

Copvyright (¢), 1978
Digital Research

4.

The following vprogram provides a framework for
programs referenced in Section 2,
by the user to read and write the specific sectors.

be inserted

GETSYS PROGRAM -

SAMPLE GETSYS AND PUTSYS PROGRAMS

the GETSYS and PUTSYS
The READSEC and WRITESEC subroutines must

READ TRACKS 9 AND 1 TO MEMORY AT 2880H
USE

(SCRATCH REGISTER)

TRACK COUNT (€, 1)

SECTOR COUNT (1,2,...,26)

(SCRATCH REGISTER PAIR)

LOAD ADLRESS

SET TO STACK ADDRESS

;SET STACK POINTER TO SCRATCH AREA
;SET BASE LOAD ADDRESS

:START WITH TRACK ¢

;READ NEXT TRACK (INITIALLY 2)
;READ STARTING WITH SECTOR 1

;READ NEXT SECTOR

;USER-SUPPLIED SUBROUTINE

sMOVE LOAD ADDRESS TO NEXT 1/2 PAGE
;HL = HL + 128

;SECTOR = SECTOR + 1

;CHECK FOR END OF TRACK

;CARRY GENERATED IF SECTOR < 27

HERE AT END OF TRACK, MOVE TO NEXT TRACK

;TEST FOR IAST TRACK

;CARRY GENERATED IF TRACK < 2

HERE AT END OF LOAD, HALT FOR NOW

USER-SUPPLIED SUBROUTINE TO READ THE DISK

H REGISTER
H A
H B
: C
H DE
H HL
s Sp
START: IXI SP,2880H
LXT H, 2830H
MVI B, @
RDTRK:
MV1 c,1
RDSEC:
CALL READSEC
LXT D,128
DAD D
INR C
Mwv A,C
CpI 27
JC RDSEC
H ARRIVE
INR B
MOV A,B
CpI 2
JC RDTRK
. ARRIVE
HLT
EADSEC:

~e ~e ~o ~o B we ~e

ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

PUSH
PUSH

B
H

;SAVE B AND C RHGISTERS
;SAVE HL REGISTERS

® 2000880006000 00800800083000800008000000080800

Perform disk read at this point, branch to
labpel START if an error occurs

10

9 00 080000 0000a080aa2800090Cc08acC0ssacACacnssssas

FOP H ; RECOVER HL
FOP B ;RECOVER B AND C REGISTERS
RET sBACK TO MAIN PRCGRAM

END START

Note that this vroaram is assembled with an assumed origin of 014@d. and listed
in Appendix D for reference purposes. The hexadecimal orceration codes which
are listed on the left may be useful if the program has to be entered through
your machine’s front panel switches,

The PUTSYS program can be constructed from GETSYS by changing only a few
operations in the GETSYS program given above, as shown in Appendix E, The
register pair HL becomes the dump address (next address to write), and
operations upon these registers do not change within the program., The READSEC
subroutine is replaced by a WRITESEC subroutine which verforms the oprosite
function: data from address HL is written to the track given by register B
and the sector given by register C, It is often useful to combine GETSYS and
PUTSYS into a single wrogram during the test and develovment phase, as shown
in Appendix E,

11

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of CP/M 1is
given here for reference purposes. The first sector (see Figure 1) contains
an ootional software boot section, Disk controllers are often set up to brina
track @, sector 1 into memory at a specific location (often location @0G%H).
The wogram in this sector, called LBOCT, has the responsibility of bringing
the remaining sectors into memory starting at location 2900H+b. If vour
controller does not have a built-in sector load, you can ianore the program in
track €, sector 1 and begin the load from track @ sector 2 to location
29008+b,

As an example, the Intel MDS-808 hardware cold start loader brings track
@, sector 1 into absolute address 30¢0H, Thus, the distribution version
contains two very small programs in track @, sector 1:

MBOOT - a storage move vrogram which moves LBOOT into
place following the cold start (Appendix A)

LBOOT -~ the cold start boot loader (Appendix B)

Upon MDS start-up, the 128 byte segment on track @, sector 1 is brought
into 3¢@¢4, The MBOOT program gets control, and moves the LBOCOT program from
location 301EH down to location 8@H in memory, in order to get LBOOT out of
the area where CP/M is loaded in a 16K system, Note that the MBOOT
program would not be needed 1f the MDS loaded directly to 80H, In general,
the LBOOT program could be located anywhere outside the CP/M load area, but is
most of*ten located in the area between @80H and OFFH (below the TPA),

After the move, MBOOT transfers to LBOOT at 80H, [BCJOT, in turn, loads
the remainder of track @ and the initialized wvortion of track 1 to memory,
starting at 29@QH+b, The user should note that MBOOT and LBOOT are of little
use in a non-MDS envirormment, although it is useful to study them since some
of their actions will have to be duplicated in your cold start loader.

Figure 1. Diskette Allocation

Track® Sector# Paged Memory Address CP/M Module name
a9 g1 (boot address) Cold Start Loader
09 @2 00 2900H+b CCp

" 83 " 2980H+b "
" 04 gl 2A00H+b "
" g5 . 2280H+b "
" 26 g2 2B0 0H+D "
" 27 " 2BB3H+b "
! 28 03 2CE0H+D .
" 29 " 2C80H+b "

12

" 10 94 2D@@H+b N

" 11 " 2D80H+b "

! 12 g5 2E098+b "

" 13 " 2E80H+b "

" 14 26 2F@¢H+b "

" 15 " 2F80H+b !

" 16 87 39008+b "
00 17 " 3080H+b CCp
20 18 28 3100H+b BDOS

! 19 o 3180H+b "

" 29 29 3200H+b !

" 21 " 3280H+b !

" 22 19 330%H+b "

" 23 . 338¢H+b "

" 24 11 3400H+b !

" 25 " 3480H+b "

! 26 12 3500H+b "
01 01 " 3580H+b "

" 92 13 3600H+b "

" 03 " 3680H+b "

" 24 14 37008H+b "

" 25 " 3780H+b !

" 06 15 3800H+b "

" @7 " 3880H+b “

" 28 16 3990H+b "

" 29 " 3980H+b "

" 19 17 3AG0H+b !

" 11 " 3a80H+b "

" 12 18 3300H+b "

* 13 " 3B80H+b "

" 14 19 3CO0H+o "

" 15 " 3C80H+b "

" 16 20 3D00H+b "

" 17 " 3D8@H+b BDCS
a1 18 21 3E@0@H+D BIOS

! 19 " 3E80H+b *

! 20 22 3F90H+b "
91 21 " 3F80H+b BIOS
21 22-26 (not currently used)

02-76 91-26 (directory and data)

13

6. THE BIOS ENTRY ROINTS

The entry points into the BIOS from the cold start loader and BDOS are
detailed below. Entry to the BIOS 1is through a "jump vector" between
locations 3E@BH+b and 3E2CH+b, as shown below (see also Appendices, pages C-2
and D-1), The jump vector is a sequence of 15 jump instructions which send
program control to the individual BIOS subroutines, The BICS subroutines may
be empty for certain functions (i,e., they may contain a single RET operation)

during regeneration of CP/M, but the entries must be present in the 3jump
vector,

It should be noted that there is a 16 byte area reserved in page zero (see
Section 9) starting at location 40H, which is available as a “"scratch" area in
case the BIOS is implemented in ROM by the user, This scratch area is never
accessed by any other CP/M subsystem during operation,

The Jump vector at 3E@BH+b takes the form shown below, where the
individual jump addresses are given to the left:

3E@0H+b JMP BOOT

;ARRIVE HERE FROM COLD START LOAD
3EZ3H+b JMP WBOOT ;ARRIVE HERE FOR WARM START
3E86H+b JMP CONST ;CHECK FOR CONSCLE CHAR READY
3EQ9H+b JMP CONIN sREAD CONSOLE CHARACTER IN
3EGCH+b JMP QONOUT sWRITE CONSOLE CHARACTER OUT
3EZFH+b JMP LIST sWRITE LISTING CHARACTER OUT
3E12H+b JMP PUNCH ;WRITE CHARACTER TO PUNCH DEVICE
3E15H+b JMP READER sREAD READER DEVICE
3E18H+b JMP HOME sMOVE TO TRACK 08 ON SELECTED DISK
3E1BH+b JMP SELDSK ;SELECT DISK DRIVE
3E1EB+D JMP SETTRK ;SET TRACK NUMBER
3E21H+b JMP SETSEC ;SET SECTOR NUMBER
3E24H+b JMP SETDMA ;SET DMA ADDRESS
3E27H+b JMP READ ;READ SELECTED SECTOR
3E2AH+b JMP WRITE sWRITE SELECTED SECTOR

Each jump address corresvonds to a particular subroutine which performs the
specific function, as outlined below, There are three major divisions in the
jump table: (1) the svstem (re)initialization which results from calls on BOOT
and WBOOT, (2) simple character I/0 performed by calls on (ONST, ONIN,
CONOUT, LIST, PUNCH, and READER, and (3) diskette I/O performed by calls on
HOME, SELDSK, SETITRK, SETSEC, SEIDMA, READ, and WRITE,

All simple character I/0 operations are assumed to be performed in ASCII,
uprer and lower case, with high order (parity bit) set to zero, An
end=of-file condition is given by an ASCII control-z (lAH), Peripheral
devices are seen by CP/M as "logical" devices, and are assigned to physical
devices within the BIO3. 1In order to operate, the BDOS needs only the CONST,
CONIN, and CONOUT subroutines (LIST, PUNCH, and READER are used by PIP, but
not by the BDJS), Thus, the initial version of CBIOS may have empty

14

subroutines for the remaining
device are

QONSCLE

ASCII devices,

The principal interactive console which
canmunicates with the operator, accessed
through CONST, CQONIN, and CONOUT. Typi=-
cally, the CONSOLE is a device such as a

The characteristics of each

LIST

PUNCH

READER

CRT or Teletyre,

The vprincipal listing device,

if it

exists on your system, which is usually
a hard-copy device, such as a printer

or Teletyrve.

The principal tape cunching device, if it
exists, which is normally a high-speed

paver tape ounch or Teletyre.

The principal tape readina device, such as
a simple ortical reader or Teletyre,

Note that a single peripheral can be assigned as the LIST, PUNCH, and READER
device simultaneously, If no veripheral device 1is assigned as the LIST,
PUNCH, or READER device, the CBIOS created by the user should
that the system does not "hang" if the device is

aperopr iate error message So

accessed by PIP or some other user program. Alternately, the PUNCH
and the READER routine can return with a 1AH

routines can simply return,
(ctl=2) in reg A to indicate

For added flexibility,

immediate erd-of-file,

the user can optionally implement the

give an

and LIST

"ICBYTE"

function which allows reassigrment of ohysical and logical devices, The
IOBYTE function creates a mapving of logical to physical devices which can be

altered durirg CP/M processing (see the STAT command).

ICBYTE function corresronds

to the Intel standard as follows:

The definition of the

a sinale

location in memory (currently location 0@@3H) is maintained, called ICBYTE,
which defines the logical to physical device mapping which is in effect at a
particular time, The mapping is performed by splitting the IOBYTE into four
distinct fields of two bits each, called the CONSOLE, READER, PUNCH, and LIST

fields, as shown below:

most significant least significant

IBYTE AT 0Q0063H | LIST

| PUNCH | READER | CONSOLE |

bits 6,7 bits 4,5 bits 2,3 bits g,1

The value in each field can be in the range 0-3, defining the assigned source

or destination of each logical device,

each field are given below

15

The values which can be assigned to

CONSOLE field (bits 6,1)
@ - console is assigned to the console printer device (TTY:)
1 - console is assigned to the CRT device (CRT:)
2 - batch mode: use the READER as the CONSOLE input,
and the LIST device as the CONSOLE output (BAT:)
3 = user—defined console device (UCl:)

READER field (bits 2,3)
¢ = READER is the Teletyre device (TTY:)
1 -~ REZDER is the high-speed reader device (PTR:)
2 - user-defined reader # 1 (UR1l:)
3 = user-defined reader % 2 (UR2:)

PUNCH field (bits 4,5)
ff - PUNCH is the Teletype device (TTY:)
1 -~ PUNCH is the high speed punch device (PTP:)
2 - user-defined punch # 1 (UPl:)
3 - user-defined punch # 2 (UP2:)

LIST field (bits 6,7)
-« LIST is the Teletype device (TTY:)
1 - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 = user-defined list device (ULl:)

Note again that the implementation of the IOBYTE is optional, and affects only
the organization of vour CBICS, No CP/M systems use the IOBYITE (although they
tolerate the existence of the IOBYTE at location 2@@3E8), except for PIP which
allows access to the physical devices, and STAT which allows logical-physical
assigrments to be made and/or displaved (for more information, see the "Cp/M
Features and Facilities Guide"). In any case, the IORYTE implementation
should be omitted until your basic CBIOS is fully implementad and tested; then
add the IOBYTE to increase your facilities,

Disk I/0 is always performed through a sequence of calls on the various
disk access subroutines, These set up the disk number to access, the track
and sector on a particular disk, and the direct memory access (DMA) address
imvolved in the I/0 overation, After all these parameters have been set up, a
call is made to the READ or WRITE function to perform the actual I/0
operation., Note that there is often a single call to SELDSK to select a disk
drive, followed by a number of read or write operations to the selected disk,
before selecting another drive for subsequent overations, Similarly, there
may be a single call to set the DMA address, followed by several calls which
read or write from the selected DMA a&address, before the DMA address is
changed. The track and sector subroutines are always called before the READ
or WRITE operations are performed. Note that the READ and WRITE routines
should perform several re-tries (1@ is a good number) before reporting the
error condition to the BDOS, If the error condition is returned to the BDOS,
it will report the error to the user, The HOME subroutine may or may not
actually perform the track 00 seek, depending upon vyour controller

16

characteristics; the important woint is that track 90 has been selected for
the next operation, and is often treated in exactly the same manner as SETTRK
with a parameter of 94.

The exact reswonsibilites of each entry point subroutine are given below:

BOOT

WBOCT

CONST

CONIN

CoNOouT

The BOOT entry roint gets control fram the cold start loader
and is responsible for basic system initialization, includ-
ing sendinc a signon messaae (which can be amitted in the
first version). If the ICBYTE function is implemented, it
must be set at this point, The various system varameters
which are set by the WBOCT entry roint must be initialized,
and control is transferred to the CCP at 29¢0H+b for further
vrocessing, Note that reg C must be set to zero to select
drive A,

The WBOOT entry point gets control when a warm start occurs.,
A warm start is rerformed whenever a user program branches to
location §@@0H, or when the CPU is reset from the front ranel,
The CP/M system must be loaded from the first two tracks of
drive A up to, but not including, the BIOS (or CBIOS, if vou
have campleted your patch). System parameters must be ini-
tialized as shown below:

location 4,1,2 Set to JMP WBOOT for warm starts
(dB00H: JMP 3EZ3H+b) .

location 3 Set initial value of IOBYTE, if
implemented in your CBIOCS,

location 5,6,7 Set to JMP BDOS, which is the

primary entry point to CP/M for
transient programs
(0095H: JMP 3196H+D) .

(See Section 9 for camplete details of page zero use.)
Upon campletion of the initialization, the WBOOT program
must branch to the CCP at 290@H+b to (re)start the system.,
Upon entry to the CCP, register C is set to the drive to
select after system initialization,

Sample the status of the currently assigned console device;
return 9FFH in register A if a character is ready to read
and f0H in register A if no console characters are ready.

Read the next console character into register A, and set the
high-order (parity bit). If no console character is ready,
walt wmntil a character is typed before returning.

Send the character from register C to the console output de—

vice, The character is in ASCII, with high-order (parity) bit
set to zero., Ycu mav want to include a time—out on a line

17

LIST

PUNCH

READER

HOME

SELDSK

SETTRK

SETSEC

feed or carriage return, if your console device requires some
time interval at the end of the line (such as a TI Silent 70¢
terminal), You can, if wou wish, filter out control char-
acters which cause your console device to react in a strange
way (a control-z causes the Lear Seigler terminal to clear
the screen, for example).

Send the character from register C to the currently assianed
listing device, The character is in ASCII with zero parity.

Send the character from register C to the currentlv assigned
punch device, The character is in ASCII with zero parity,

Read the next character from the currently assigned reader de-
vice into register A with zero parity (high~order bit must be
zero) , an end-of-file condition is reported by returning an
ASCII control-z (1AH),

Return the disk head of the currently selected disk (initially
disk A) to the track 09 position, If vour controller allows
access to the track @ flag from the drive, step the head until
the track @ flag is detected. If your controller does not
support this feature, you can translate the HOME call into a
call on SETIRK with a parameter of 4.

Select the disk drive given by register C for further opera-
tions, where register C contains @ for drive &, 1 for drive B,
2 for drive C, and 3 for drive D, (The standard CP/M
distribution version supports a maximum of four drives). If
your system has less than 4 drives, you may wish to give an
error message at the console, and terminate execution., It is
advisable to postpone the actual disk select operation wuntil
an I/0 function (seek, read or write) is actually performed,
since disk selects often occur without ultimately verformina
any disk I/0, and many controllers will wmload the head of the
current disk before selecting the new drive., This would
cause an excessive amount of noise and disk wear.

Register C contains the track number for subseguent disk
accesses on the currently selected drive, You can choose to
seek the selected track at this time, or delay the seek until
the next read or write actually occurs. Register C can take
on values in the range §-76 corresvonding to valid track
numbers,

Reagister C contains the sector number (1 throuch 26) for sub—
seguent disk accesses on the currently selected drive. You
can chocse tc send this information to the controller at this
oint, or instead delay sector selection until a read or
write cperation occurs,

18

SETTMA

READ

WRITE

Registers B and C (high-order 8 bits in B, low—order 8 pits

in C) contain the DMA (Direct Memory Access) address for sub—-
sequent read or write operations., For example, if B = J¢H

and C = 80H when SETDMA is called, then all subsegquent read
operations read their data into 89H through @FFH, and all
Supseguent write operations get their data from 80H through

gFFH, until the next call to SETDMA occurs, The initial

DMA address is assumed to be 80H, Note that the controller
need not actually suprort direct memory access, If, for
example, all data is received and sent through I/0 ports, the
CBIOS which you construct will use the 128-pyte area starting
at the selected DMA address for the memory buffer during the

following read or write operations,

Assuming the drive has been selected, the track has been set,

the sector has been set, and the CMA address has been speci-
fied, the READ subroutine attempts to read one sector based

upon these parameters, and returns the following error codes

in register A:

@ no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M resvonds only to a zero or non—-zero value as
the return code., That is, if the value in register A is @
then CP/M assumes that the disk operation completed rroperly.
If an error occurs, however, the CBIOS should attempt at
least 10 re-tries to see if the error is recoverable, When an
error is reported the BDOS will print the message "BDOS ERR
CN x: BAD SECTOR," The operator then has the option of
typing <cr> to ignore the error, or control-C to abort.

Write the data from the currently selected DMA address to the
currently selected drive, track, and sector., The data should
be marked as "non deleted data" to maintain campatibility
with other CP/M systems. The error codes given in the READ
canmand are returned in register A, with error recovery at-
tempts as described above,

19

7. A SAMPLE BIOS

The program shown in Appendix D can serve as a basis for your first BICS.
The simplest functions are assumed in this BIOS, so that you can enter it
through the front panel, if absolutely necessary, Note that the user must
alter and insert code into the subroutines for CONST, CONIN, CONOUT, READ,
WRITE, and WAFTIO, Storage is reserved for user-supclied code 1in these
regions. The scratch area reserved in page zero (see Section 9) for the BICS
is used in this program, sc that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print the
initial sign-on message and perform better error recovery, The su